
Wicket user guide
by Andrea Del Bene (an.delbene@gmail.com)

A free guide to Apache Wicket

mailto:an.delbene@gmail.com
mailto:an.delbene@gmail.com

License

This document is licensed under the Attribution-NonCommercial-ShareAlike 3.0 Unported

You are free:

• to Share — to copy, distribute and transmit the work
• to Remix — to adapt the work

Under the following conditions:

• Attribution — You must attribute the work in the manner specified by the author or licensor (but not in
any way that suggests that they endorse you or your use of the work).

• Noncommercial — You may not use this work for commercial purposes.
• Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work

only under the same or similar license to this one.

The full license is available at http://creativecommons.org/licenses/by-nc-sa/3.0/.

http://creativecommons.org/licenses/by-nc-sa/3.0/

“We should invent a miracle...yes, we should get to the point where our egoism magically coincides with
the happiness of others.”

 -Giorgio Gaber, singer, poet and actor.

 Table of Contents

Table of Contents

 Preface...1
 How to use the example code..2
 Graphic conventions..3
1 Why should I learn Wicket?...4

1.1 We all like spaghetti :-) ...4
1.2 Component oriented frameworks: an overview...4
1.3 Benefits of component oriented frameworks for web development...5
1.4 Wicket vs the other component oriented frameworks...5

2 Wicket says “Hello world!”..7
2.1 Wicket distribution and modules..7
2.2 Configuration of Wicket applications...8

2.2.1 Wicket application structure..8
2.2.2 The application class..9

2.3 The HomePage class..11
2.4 Wicket Links.. 12
2.5 Summary... 13

3 Wicket as page layout manager...15
3.1 Header, footer, left menu, content, etc..15
3.2 Here comes the inheritance!...17

3.2.1 Markup inheritance...17
3.2.2 Panel class...18

3.3 Divide et impera!...20
3.3.1 Panels and layout areas...20
3.3.2 Template page..21
3.3.3 Final example...21

3.4 Markup inheritance with <wicket:extend> tag ..23
3.4.1 Our example revisited...24

3.5 Summary... 25

4 Keeping control over HTML...26
4.1 Hiding or disabling a component...26
4.2 Modifing tag attributes...26
4.3 Generating tag attribute 'id' ..27
4.4 Creating panels “on the fly” with WebMarkupContainer..27
4.5 Working with markup fragments..28
4.6 Adding header contents to the final page..29
4.7 Using stub markup in our pages/panels..30
4.8 How to render component body only...30
4.9 Hiding decorating elements with tag <wicket:enclosure>..31
4.10 Surrounding existing markup with Border...32
4.11 Summary... 33

5 Components lifecycle...35
5.1 Lifecycle stages of a component...35
5.2 Hook methods for component lifecycle...35
5.3 Initialization stage..36
5.4 Rendering stage..36

5.4.1 Method onBeforeRender..36
5.4.2 Method onConfigure...37
5.4.3 Method onComponentTag..37
5.4.4 Methods onComponentTagBody..38

5.5 Removing stage..39
5.6 Summary... 39

6 Page versioning and caching..40
6.1 Stateful pages VS stateless..40
6.2 Stateful pages... 40

6.2.1 Using a specific page version with PageReference..42
6.2.2 Turning off page versioning..42
6.2.3 Pluggable serialization..42
6.2.4 Page caching..42
6.2.5 Page expiration...43

6.3 Stateless pages...44

Wicket free user guide i

 Table of Contents

6.4 Summary... 45

7 Under the hood of request processing...46
7.1 Class Application and request processing..46
7.2 Classes Request and Response...46
7.3 The “director” of request processing: RequestCycle...46

7.3.1 RequestCycle and request processing...47
7.3.2 Generating url with methods urlFor and mapUrlFor...48
7.3.3 Method setResponsePage...48
7.3.4 RequestCycle's hook methods and listeners..48

7.4 Class Session.. 49
7.4.1 Session and listeners..49
7.4.2 Handling session attributes...50
7.4.3 Accessing to http session...50
7.4.4 Temporary and permanent sessions..51
7.4.5 Discarding session data..52

7.5 Storing arbitrary objects with metadata...52
7.6 Summary... 53

8 Wicket Links and URL generation...54
8.1 PageParameters...54

8.1.1 PageParameters and bookmarkable pages...54
8.1.2 Indexed parameters..55

8.2 Bookmarkable links...56
8.3 Automatically creating bookmarkable links with tag <wicket:link>..56
8.4 External links... 58
8.5 Stateless links... 59
8.6 Generating structured and clear URLs..59

8.6.1 Mounting a single page...59
8.6.2 Using parameter placeholders with mounted pages...60
8.6.3 Mounting a package...61
8.6.4 Providing custom mapper context to request mappers..61
8.6.5 Controlling how page parameters are encoded with IPageParametersEncoder....................................62
8.6.6 Encrypting page URLs..63

8.7 Summary... 64

9 Wicket models and forms..65
9.1 What is a model?...65
9.2 Models and JavaBeans...67

9.2.1 PropertyModel..67
9.2.2 CompoundPropertyModel and model inheritance..68

9.3 Wicket forms.. 70
9.3.1 Form and models..70
9.3.2 Login form...71

9.4 Component DropDownChoice..74
9.5 Model chaining.. 75
9.6 Detachable models..78
9.7 Using more than one model in a component...80
9.8 Use models!.. 81
9.9 Summary... 81

10 Wicket forms in detail...82
10.1 Default form processing..82
10.2 Form validation and feedback messages..82

10.2.1 Feedback messages and localization...83
10.2.2 Displaing feedback messages and filtering them...84
10.2.3 Built-in validators..84
10.2.4 Overriding standard feedback messages with custom bundles..86
10.2.5 Creating custom validators...86
10.2.6 Using flash messages...88

10.3 Input value conversion..89
10.3.1 Creating custom application-scoped converters..90

10.4 Submit form with an IFormSubmittingComponent...92
10.4.1 Components Button and SubmitLink..93
10.4.2 Disabling default form processing...95

10.5 Nested forms... 95
10.6 Multi-line text input..95
10.7 File upload .. 96

10.7.1 Upload multiple files..97

Wicket free user guide ii

 Table of Contents

10.8 Creating complex form components with FormComponentPanel...97
10.9 Stateless form...100
10.10 Working with radio buttons and checkboxes...102

10.10.1 Working with grouped checkboxes...104
10.10.2 How to implement a “Select all” checkbox..105
10.10.3 Working with grouped radio buttons...106

10.11 Selecting multiple values with ListMultipleChoices and Palette ...106
10.11.1 Component Palette...107

10.12 Summary... 109

11 Displaying multiple items with repeaters..110
11.1 Component RepeatingView...110
11.2 Component ListView...111

11.2.1 ListView and Form..112
11.3 Component RefreshingView..112

11.3.1 Item reuse strategy...113
11.4 Pageable repeaters...113

11.4.1 Component DataView...113
11.4.2 Data paging..114

11.5 Summary... 115

12 Internationalization with Wicket...117
12.1 Localization...117
12.2 Class Locale and ResourceBundle...117
12.3 Localization in Wicket..118

12.3.1 Style and variation parameters for bundles..119
12.3.2 Using XML files as resource bundles...119
12.3.3 Reading bundles from code..120
12.3.4 Localization of bundles in Wicket..120
12.3.5 Localization of markup files..121
12.3.6 Reading bundles with tag <wicket:message>...121

12.4 Bundles lookup algorithm..122
12.4.1 Localizing pages and panels..122
12.4.2 Component-specific resources...123
12.4.3 Package bundles..124
12.4.4 Bundles for feedback messages...124
12.4.5 Extending the default lookup algorithm...125

12.5 Localization of component's choices...125
12.6 Internationalization and Models...126

12.6.1 ResourceModel...127
12.6.2 StringResourceModel...127

12.7 Summary... 128

13 Resource management with Wicket..130
13.1 Static vs dynamic resources..130
13.2 Resource references...130
13.3 Package resources..130

13.3.1 Using package resources with tag <wicket:link> ...132
13.4 Adding resources to page header section...133
13.5 Resource dependencies..134
13.6 Custom resources...134
13.7 Mounting resources...135
13.8 Shared resources..136
13.9 Customizing resource loading...137
13.10 Summary... 139

14 An example of integration with JavaScript...140
14.1 What we want to do...140

14.1.1 What features we want to implement..140
14.2 ...and how we will do it..141

14.2.1 Component package resources ...141
14.2.2 Initialization code..142
14.2.3 Header contributor code...143

14.3 Summary... 144

15 Wicket advanced topics...145
15.1 Enriching components with behaviors...145
15.2 Generating callback URLs with IRequestListener...146
15.3 Wicket events infrastructure..148
15.4 Initializers.. 150

Wicket free user guide iii

 Table of Contents

15.5 Using JMX with Wicket..150
15.6 Generating HTML markup from code..152

15.6.1 Avoiding markup caching..153
15.7 Summary... 154

16 Working with AJAX...155
16.1 How to use AJAX components and behaviors..155
16.2 Built-in AJAX components...156

16.2.1 Links and buttons..156
16.2.2 Fallback components..156
16.2.3 AJAX Checkbox..157
16.2.4 AJAX editable labels...157
16.2.5 Autocomplete text field...158
16.2.6 Modal window...158
16.2.7 Tree repeaters..160
16.2.8 Working with hidden components...165

16.3 Built-in AJAX behaviors...165
16.3.1 AjaxEventBehavior...165
16.3.2 AjaxFormSubmitBehavior...167
16.3.3 AjaxFormComponentUpdatingBehavior...167
16.3.4 AbstractAjaxTimerBehavior..167

16.4 Using an activity indicator..168
16.5 Ajax request attributes and call listeners...168
16.6 Creating custom AJAX call listener...170

16.6.1 What we want for our listener...170
16.6.2 How to implement the listener..171
16.6.3 JavaScript code..171
16.6.4 Class code..172
16.6.5 Global listeners...173

16.7 Summary... 174

17 Integration with enterprise containers..175
17.1 Integrating Wicket with EJB...175
17.2 Integrating Wicket with Spring...176
17.3 JSR-330 annotations...177
17.4 Summary... 178

18 Security with Wicket...179
18.1 Authentication..179

18.1.1 AuthenticatedWebSession..179
18.1.2 AuthenticatedWebApplication...180
18.1.3 A basic example of authentication..180
18.1.4 Redirecting user to an intermediate page...182

18.2 Authorizations..183
18.2.1 SimplePageAuthorizationStrategy..184
18.2.2 Role-based strategies...184

18.2.2.1 Using roles with metadata..185
18.2.2.2 Using roles with annotations..187

18.2.3 Catching an unauthorized component instantiation..188
18.2.4 Strategy RoleAuthorizationStrategy..189

18.3 Using HTTPS protocol...189
18.4 Package Resource Guard...190
18.5 Summary... 191

19 Test Driven Development with Wicket..192
19.1 Utility class WicketTester..192

19.1.1 Testing links ...193
19.1.2 Testing component status...194
19.1.3 Testing components in isolation...194
19.1.4 Testing the response..194
19.1.5 Testing URLs..195
19.1.6 Testing AJAX components...195
19.1.7 Testing AJAX events..195
19.1.8 Testing AJAX behaviors...196
19.1.9 Using a custom servlet context...197

19.2 Testing Wicket forms...197
19.2.1 Setting form components input...198
19.2.2 Testing feedback messages...198
19.2.3 Testing models...199

Wicket free user guide iv

 Table of Contents

19.3 Testing markup with TagTester...199
19.4 Summary... 200

 Appendix A: working with Maven..202
A.1Switching Wicket to DEPLOYMENT mode..202
A.2Creating a Wicket project from scratch and importing it into our favourite IDE...203

A.2.1From Maven to our IDE...203
A.2.2Importing a Maven project into our IDE...205
A.2.3Speeding up development with plugins...207

 Appendix B: project WicketStuff...209
B.1What is project WicketStuff?..209
B.2Module tinymce..209
B.3Module wicketstuff-gmap3...210
B.4Module wicketstuff-googlecharts..211
B.5Module wicketstuff-inmethod-grid..212

 Alphabetical Index..215

Wicket free user guide v

 Preface

Preface

Wicket has been around since 2004 and it's an Apache project since 2007. During these years it has
proved to be a solid and valuable solution for building enterprise web applications.

Wicket core developers have done a wonderful job with this framework and they continue to improve it
release after release.

However Wicket never provided a freely available documentation and even if you can find on Internet
many live examples and many technical articles on it (most of them at http://www.wicket-library.com/
and at http://wicketinaction.com/), the lack of an organized and freely available documentation has
always been a sore point for this framework.

That's quite an issue because many other popular frameworks (like Spring, Hibernate or Struts) offer a
vast and very good documentation which substantially contributed to their success.

This document is not intended to be a complete reference for Wicket but it simply aims to be a
straightforward introduction to the framework that should significantly reduce its learning curve. What
you will find here reflects my experience with Wicket and it's strictly focused on the framework.

The various Wicket-related topics are gradually introduced using pragmatic examples of code that you
can find at https://github.com/bitstorm/Wicket-tutorial-examples.

However remember that Wicket is a vast and powerful tool, so you should feel confident with the topics
exposed in this document before starting to code your real applications!

For those who need further documentation on Wicket, there are many good books available on this
framework. You can find an exhaustive list of these books at http://wicket.apache.org/learn/books/

Hope you'll find this guide helpful. Have fun with Wicket!

Andrea Del Bene, an.delbene@gmail.com

PS: this guide is based on Wicket 6. However if you are using an older version you should find this
guide useful as well, but it's likely that code examples and snippets won't work with your version.
PPS: although I've did my best working on this tutorial, this document is a work in progress and may
contain errors and/or omissions. That's why any feedback of any kind is REALLY appreciated!

Wicket free user guide 1

mailto:an.delbene@gmail.com
mailto:an.delbene@gmail.com
http://wicket.apache.org/learn/books/
https://github.com/bitstorm/Wicket-tutorial-examples
http://wicketinaction.com/
http://www.wicket-library.com/

 How to use the example code

How to use the example code

Most of the code you will find in this document is available as Git repository at https://github.com/
bitstorm/Wicket-tutorial-examples and is licensed under the ASF 2.01. To get a local copy of the
repository you can run the clone command from shell:

git clone https://github.com/bitstorm/Wicket-tutorial-examples.git

If you aren't used to Git, you can simply download the whole source as a zip archive:

The repository contains a multi-module Maven project. Every subproject is contained in the relative
folder of the repository:

When the example code is used in the document, you will find the name of the subproject it belongs to.
If you haven't any experience with Maven, you can read Appendix A where you can learn the basic
commands needed to work with example projects and to import them into your favourite IDE (NetBeans,
IDEA or Eclipse).

1 http://www.apache.org/licenses/LICENSE-2.0

Wicket free user guide 2

https://github.com/bitstorm/Wicket-tutorial-examples
https://github.com/bitstorm/
https://github.com/bitstorm/
https://github.com/bitstorm/Wicket-tutorial-examples
http://www.apache.org/licenses/LICENSE-2.0

 Graphic conventions

Graphic conventions
To make reading easier, some graphic conventions have been adopted:

• Code reference inside text are written with a different font (FreeMono):

...the variable message is....

• Code blocks are formatted and coloured following the default Eclipse style:

/**

 * This is about <code>ClassName</code>.

 * {@link com.yourCompany.aPackage.Interface}

 * @author author

 * @deprecated use <code>OtherClass</code>

 */

public class ClassName<E> implements InterfaceName<String> {

enum Color { RED, GREEN, BLUE };

/* This comment may span multiple lines. */

static Object staticField;

// This comment may span only this line

private E field;

// TASK: refactor

@SuppressWarnings(value="all")

public int foo(Integer parameter) {

abstractMethod();

int local= 42*hashCode();

staticMethod();

return bar(local) + parameter;

}

}

• Important informations and warnings are written inside blocks like these:

 Note

 bla...bla...bla....

 Warning

 bla...bla...bla....

Wicket free user guide 3

1 Why should I learn Wicket?

1 Why should I learn Wicket?

Software development is a challenging activity and developers must keep their skills up-to-date with
new technologies.

But before starting to learn the last “coolest” framework we should always ask ourself if it is the right
tool for us and how it can improve our everyday job.

Java ecosystem is already full of many well-known web frameworks, so why should we spend our time
learning Wicket?

This chapter will show you why Wicket is different from other web frameworks you may know and it will
explain also how Wicket can improve your life as web developer.

1.1 We all like spaghetti :-) ...
...but we all hate spaghetti code! That's why in the first half of the 2000s we have seen the birth of so

many web frameworks. Their mission was to separate our business code from presentation layer (like
JSP pages).

Some of theme (like Struts, Spring MVC, Velocity, ecc...) have become widely adopted and they made
the MVC pattern very popular among developers.

However no one of these frameworks offers a real OO2 abstraction for web pages and we still have to
take care of web-related tasks such as HTTP request/response handling, URLs mapping, storing data
into user session and so on.

But the biggest limit of MVC frameworks is that they don't do much to overcome the impedance
mismatch between the stateless nature of HTTP protocol and the need of our web applications of
handling a (very complex) state.

To overcome these limits developers have started to adopt a new generation of component oriented
web frameworks designed to provide a completely different approach to web development.

1.2 Component oriented frameworks: an overview
Component oriented frameworks differ from classic web frameworks in that they build a model of

requested page on server side and the HTML sent back to the client is generated according to this
model. You can think at this model as if it was an “inverse” JavaScript DOM, meaning that:

1. is built on server-side
2. is built before HTML is sent to client
3. HTML code is generated using this model and not vice versa.

2 Object Oriented

Wicket free user guide 4

Illustration 1.1: General schema of page request handling for a component oriented
framework

1 Why should I learn Wicket?

With this kind of framework our web pages and their HTML components (forms, input controls, links,

etc...), are pure class instances.
Since pages are class instances they live inside JVM heap and we can handle them as we use to do

with any other Java class.
This approach is very similar to what GUI frameworks (like Swing or SWT) do with desktop windows

and their components. Wicket and the other component oriented frameworks bring to web development
the same kind of abstraction that GUI frameworks offer when we build a desktop application. But most of
all this kind of framework hides the details of HTTP protocol and naturally solves the problem of its
stateless nature.

1.3 Benefits of component oriented frameworks for web development

At this point some people may still wonder why OOP is so important also for web development and
what benefits it can bring to developers.

Let's quickly review the main advantages that this paradigm can offer us:

• Web pages are objects: web pages are no more just text files sent back to the client. They
are object instances and we can harness OOP to design web pages and their components.
With Wicket we can also apply inheritance to HTML markup in order to build a consistent
graphic layout for our applications (we will see markup inheritance in chapter 3).

• We don't have to worry about application's state: pages and components can be
considered stateful entities. They are Java objects and they can keep a state inside them and
reference other objects. We can stop worrying about keeping track of user data stored inside
HttpSession and we can start managing them in a natural and transparent way.

• Testing web applications is much easier: since pages and components are pure objects,
you can use JUnit to test their behavior and to ensure that they render as expected.
Wicket has a set of utility classes for unit testing that simulate user interaction with web pages,
hence we can write acceptance tests using just JUnit without any other test framework (unit
testing is covered in chapter 20).

1.4 Wicket vs the other component oriented frameworks
Wicket is not the only component oriented framework available in the Java ecosystem. Among its

competitors we can find GWT (from Google), JSF (from Oracle), Vaadin (from Vaadin Ltd.), etc...
Even if Wicket and all these frameworks have their pros and cons, there are good reasons to prefer

Wicket over them:

• Wicket is 100% open source: Wicket is a top Apache project and it doesn't depend on any
private company. You don't have to worry about future licensing changes, Wicket will always
be released under Apache license 2.0 and freely available.

• Wicket is a community driven project: Wicket team supports and promotes the dialogue
with framework users through two mailing lists (one for users and another one for framework
developers)3 and an Apache JIRA4 (the issue tracking system).
Moreover, as any other Apache project, Wicket is developed paying great attention to user
feedbacks and to suggested features.

3 See http://wicket.apache.org/help/email.html
4 https://issues.apache.org/jira/browse/WICKET

Wicket free user guide 5

https://issues.apache.org/jira/browse/WICKET
http://wicket.apache.org/help/email.html

1 Why should I learn Wicket?

• Wicket is just about Java and good old HTML: almost all web frameworks force users to
adopt special tags or to use server side code inside HTML markup. This is clearly in contrast
with the concept of separation between presentation and business logic and it leads to a more
confusing code in our pages.
In Wicket we don't have to take care of generating HTML inside the page itself, and we won't
need to use any tag other than standard HTML tags.
All we have to do is to attach our components (Java instances) to HTML tags using a simple
tag attribute called wicket:id (we will shortly see how to use it).

• With Wicket we can easily use JavaBeans and POJO5 in our web tire: one of the most
annoying and error-prone task in web development is collecting user input through a form and
keeping form fields updated with previously inserted values. This usually requires a huge
amount of code to extract input from request parameters (which are strings), parse them to
Java types and store them into some kind of variable. And this is just half of the work we have
to do as we must implement also the inverse path (load data from Java to the web form).
Moreover, most of the times our forms will use a JavaBeans or a POJO as backing object,
meaning that we must manually map form fields with the corresponding object fields and vice
versa.
Wicket comes with an intuitive and flexible mechanism that does this mapping for us without
any configuration overhead (using a convention over configuration approach) and in a
transparent way.
Chapter 9 will introduce the concept of Wicket model and we will learn how to harness this
entity with forms.

• No complex XML needed: Wicket was designed to minimize the amount of configuration files
needed to run our applications. No XML file is required except for the standard deployment
descriptor web.xml.

5 For a definition of POJO see http://en.wikipedia.org/wiki/Plain_Old_Java_Object

Wicket free user guide 6

http://en.wikipedia.org/wiki/Plain_Old_Java_Object

2 Wicket says “Hello world!”

2 Wicket says “Hello world!”

Wicket allows us to design our web pages in terms of components and containers, just like AWT does
with desktop windows.

Both frameworks share the same component-based architecture: in AWT we have a Windows
instance which represents the physical windows containing GUI components (like text fields, radio
buttons, drawing areas, ecc...), in Wicket we have a WebPage instance which represents the physical
web page containing HTML components (pictures, buttons, forms, etc...) .

In both frameworks we find a base class for GUI components called Component. Wicket pages can be
composed (and usually are) by many components, just like AWT windows are composed by Swing/AWT
components.

Both frameworks promote the reuse of presentation code and GUI elements building custom
components. Even if Wicket already comes with a rich set of ready-to-use components, building custom
components is a common practice working with this framework. We'll learn more about custom
components in the next chapters.

2.1 Wicket distribution and modules
Wicket is available as a binary package on the main site http://wicket.apache.org. Inside this archive

we can find the distribution jars of the framework. Each jar corresponds to a sub-module of the
framework. The following table reports these modules along with a short description of their purpose and
with the related dependencies:

Module'sname Description Dependencies

wicket-core Contains the main classes of the framework, like

class Component and Application.

- wicket-request

- wicket-util

wicket-request This module contains the classes involved into web
request processing.

- wicket-util

wicket-util Contains general-purpose utility classes for
functional areas such as I/O, lang, string
manipulation, security, etc...

None.

Wicket free user guide 7

http://wicket.apache.org/

2 Wicket says “Hello world!”

wicket-datetime Contains special purpose components designed to
work with date and time.

-wicket-core

wicket-devutils Contains utility classes and components to help
developers with tasks such as debugging, class
inspection and so on.

-wicket-core

-wicket-extensions

wicket-extensions Contains a vast set of built-in components to build
a rich UI for our web application (Ajax support is
part of this module).

-wicket-core

wicket-auth-roles Provides support for role-based authorization. -wicket-core

wicket-ioc This module provides common classes to support
Inversion Of Control. It's used by both Spring and
Guice integration module.

-wicket-core

wicket-guice This module provides integration with the
dependency injection framework developed by
Google.

-wicket-core

-wicket-ioc

wicket-spring This module provides integration with Spring
framework.

-wicket-core

-wicket-ioc

wicket-velocity This module provides panels and utility class to
integrate Wicket with Velocity template engine.

-wicket-core

wicket-jmx This module provides panels and utility class to
integrate Wicket with Java Management
Extensions.

-wicket-core

wicket-objectsizeof-agent Provides integration with Java agent libraries and
instrumentation tools.

-wicket-core

Please note that core module depends on utility and request modules, hence it cannot be used without
them.

2.2 Configuration of Wicket applications
In this chapter we will see a classic Hello World! example implemented using a Wicket page with a

built-in component called Label (the code is from project HelloWorldExample)
Since this is the first example of the guide, before looking at Java code we will go through the common

artifacts needed to build a Wicket application from scratch.

 Note

All the example projects presented in this document have been generated using

Maven and the utility page at http://wicket.apache.org/start/quickstart.html.

Appendix A contains the instructions needed to use this projects and build a

quickstart application using Apache Maven. All the artifacts used in the next

example (files web.xml, HomePage.class and HomePage.html) are automatically

generated by Maven.

2.2.1 Wicket application structure.

A Wicket application is a standard Java EE web application, hence it is deployed through a web.xml file
placed inside folder WEB-INF6:

6 See “Directory Structure” paragraph of Servlet Specification document

Wicket free user guide 8

http://wicket.apache.org/start/quickstart.html

2 Wicket says “Hello world!”

The content of web.xml declares a servlet filter (class org.apache.wicket.Protocol.http.
WicketFilter) which dispatches web requests to our Wicket application:

<?xml version="1.0" encoding="UTF-8"?>

<web-app>

 <display-name>Wicket Test</display-name>

 <filter>

 <filter-name>TestApplication</filter-name>

 <filter-class>org.apache.wicket.protocol.http.WicketFilter</filter-class>

 <init-param>

 <param-name>applicationClassName</param-name>

 <param-value>org.wicketTutorial.WicketApplication</param-value>

 </init-param>

 </filter>

 <filter-mapping>

 <filter-name>TestApplication</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

</web-app>

Since this is a standard servlet filter we must map it to a specific set of URLs through the <filter-
mapping> tag). In the xml above we have mapped every URL to our Wicket filter.

 Note

Wicket can be started in two modes named respectively DEVELOPMENT and

DEPLOYMENT. The first mode activates some extra features which help

application development, like resources monitoring and reloading, full stack trace

rendering of exceptions, an AJAX debugger window, etc...

The DEPLOYMENT mode turns off all these features optimizing performances

and resource consumption.

In our example projects we will use the default mode which is DEVELOPMENT.

Appnedix A contains chapter “Switching Wicket to DEPLOYMENT mode“ where

we can find further details about these two modes as well as the possible ways

we have to set the desired one.

In any case, DO NOT deploy your applications in a production environment

without switching to DEPLOYMENT mode!

2.2.2 The application class

If we look back to web.xml we can see that we have provided Wicket filter with a parameter called
applicationClassName. This value must be the fully qualified class name of a subclass of org.

Wicket free user guide 9

Illustration 2.1: The standard directory structure of a Wicket application

2 Wicket says “Hello world!”

apache.wicket.Application. This subclass represents our web application built upon Wicket and
it's responsible for configuring it when the server is starting up. Most of the times our custom application
class won't inherit directly from class Application, but rather from class org.apache.wicket
.protocol.http.WebApplication which provides a closer integration with servlet infrastructure.

Class Application comes with a set of configuration methods that we can override to customize our
application's settings. One of these methods is getHomePage() that must be overridden as it is
declared abstract:

public abstract Class<? extends Page> getHomePage()

As you may guess from its name, this method specifies which page to use as homepage for our
application.

Another important method is init():

protected void init()

This method is called when our application is loaded by web server (Tomcat, Jetty, ecc...) and is the
ideal place to put our configuration code. Application class exposes its settings grouping them into
interfaces (you can find them in package org.apache.wicket.settings). We can access these
interfaces through getter methods that will be gradually introduced in the next chapters when we will
cover the related settings.

The current application's instance can be retrieved at any time calling static method
Application.get() in our code. We will give more details about this method in chapter 7.3.

The content of the application class from project HelloWorldExample is the following:

public class WicketApplication extends WebApplication

{

@Override

public Class<? extends WebPage> getHomePage()

{

return HomePage.class;

}

@Override

public void init()

{

super.init();

// add your configuration here

}

}

Since this is a very basic example of Wicket application, we don't need to specify anything inside init
method. The home page of the application is class HomePage.java. In the next paragraph we will see
how this page is implemented and which conventions we have to follow to create a page in Wicket.

 Note

Declaring a WicketFilter inside web.xml descriptor is not the only way we

have to kickstart our application.

If we prefer to use a servlet instead of a filter, we can use class org.apache.

Wicket free user guide 10

2 Wicket says “Hello world!”

wicket.protocol.http.WicketServlet. See JavaDoc for further details.

2.3 The HomePage class
To complete our first Wicket application we must explore the home page class that is returned by
Application's method getHomePage() seen above.

In Wicket a web page is a subclass of org.apache.wicket.WebPage. This subclass must have a
corresponding HTML file which will be used by the framework as template to generate its HTML markup.
This file is a regular plain HTML file (its extension must be html).

By default this HTML file must have the same name of the related page class and must be in the same
package:

If you don't like to put class and html side by side (let's say you want all your HTML files in a separated
folder) you can use Wicket settings to specify where HTML files can be found. We will cover this topic
later in paragraph 13.9.

The Java code for HomePage.java is the following:

package org.wicketTutorial;

import org.apache.wicket.request.mapper.parameter.PageParameters;

import org.apache.wicket.markup.html.basic.Label;

import org.apache.wicket.markup.html.WebPage;

public class HomePage extends WebPage {

 public HomePage() {

add(new Label("helloMessage", "Hello WicketWorld!"));

 }

}

Apart from subclassing WebPage, HomePage defines a constructor that adds a Label component to
itself.

Method add(Component component) is inherited from ancestor class org.apache.wicket.
MarkupContainer and is used to add children components to a web page. We'll see more about
MarkupContainer later in chapter 3.2.2.

Class org.apache.wicket.markup.html.basic.Label is the simplest component shipped with
Wicket. It just inserts a string (the second argument of its constructor) inside the corresponding HTML
tag.

Just like any other Wicket component, Label needs a textual id ('helloMessage' in our example) to
be instantiated. At runtime Wicket will use this value to find the HTML tag we want to bind to the
component. This tag must have a special attribute called wicket:id and its value must be identical to the
component id (comparison is case-sensitive!).

Here is the HTML markup for HomePage (file HomePage.html):

Wicket free user guide 11

Illustration 2.2:Page class and its related HTML file

2 Wicket says “Hello world!”

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />

<title>Apache Wicket HelloWorld</title>

</head>

<body>

<div wicket:id="helloMessage">

[Label's message goes here]

</div>

</body>

</html>

We can see that the wicket:id attribute is set according to the value of component id. If we run this
example we will see the text Hello WicketWorld! inside <div> tag.

 Note

Please note that Label replaces the original content of its tag (in our example

[Label's message goes here]) with the string passed as value (Hello

WicketWorld! in our example).

 Warning

If we specify a wicket:id attribute for a tag without adding the corresponding

component in our Java code, Wicket will throw a ComponentNotFound

Exception.

On the contrary if we add a component in our Java code without specifying a

corresponding wicket:id attribute in our markup, Wicket will throw a

WicketRuntimeException.

2.4 Wicket Links
The basic form of interaction offered by web applications is to navigate through pages using links. In

HTML a link is basically a pointer to another resource that most of the times is another page. Wicket
implements links with component org.apache.wicket.markup.html.link.Link, but due to the
component-oriented nature of the framework, this component is quite different from classic HTML links.

Following the analogy with GUI frameworks, we can consider Wicket link as a “click” event handler: its
purpose is to perform some actions (on server side!) when user clicks on it.

That said, you shouldn't be surprised to find an abstract method called onClick() inside Link class.
In the following example we have a page with a Link containing an empty implementation of onClick:

public class HomePage extends WebPage {

public HomePage(){

add(new Link("id"){

@Override

public void onClick() {

 //link code goes here

}

Wicket free user guide 12

2 Wicket says “Hello world!”

});

}

}

By default after onClick has been executed, Wicket will send back to client the current page. If we
want to navigate to another page we must use Component's method setResponsePage:

public class HomePage extends WebPage {

public HomePage(){

add(new Link("id"){

@Override

public void onClick() {

 //we redirect browser to another page.

 setResponsePage(AnotherPage.class);

}

});

}

}

In the example above we used a version of setResponsePage which takes in input the class of the
target page. In this way a new instance of AnotherPage will be create each time we click on the link.
The other version of setResponsePage implemented by Component takes in input a page instance
instead of a page class:

//...

@Override

public void onClick() {

 //we redirect browser to another page.

 AnotherPage anotherPage = new AnotherPage();

 setResponsePage(anotherPage);

}

//...

The difference between using the first version of setResponsePage rather than the second one will
be illustrated in chapter 6, when we will introduce the topic of stateful and stateless pages. For now, we
can consider them as equivalent.

 Note

Wicket comes with a rich set of link components suited for every needs (links to static

url, Ajax-enhanced links, links to a file to download, links to external pages and so on).

We will see them in chapter 8.

2.5 Summary
In this chapter we have seen the very basic elements that compose a Wicket application. We have

started preparing the configuration artifacts needed for our applications. As promised in paragraph 1.4,
we needed to put in place just a minimal amount of XML with an application class and an home page.

Then we have continued our “first contact” with Wicket learning how to build a simple page with a label
component as child. This example page has shown us how Wicket maps components to HTML tags and

Wicket free user guide 13

2 Wicket says “Hello world!”

how it uses both of them to generate the final HTML markup.
In the last paragraph we had a first taste of Wicket links and we have seen how they can be

considered as a “click” event listener and how they can be used to move from a page to another.

Wicket free user guide 14

3 Wicket as page layout manager

3 Wicket as page layout manager

Before going ahead with more advanced topics, we will see how to maintain a consistent layout across
our site using Wicket and its component-oriented features.

Probably this is not the most interesting use we can do of Wicket, but it is surely the simplest one so
it's the best way to start dirtying our hands with some code.

3.1 Header, footer, left menu, content, etc...
There was a time in the 90s when Internet was just a buzzword and watching a plain HTML page being

rendered by a browser was a new and amazing experience. In those days we used to organize our page
layout using HTML tag <frame>.

By the years this tag has almost disappeared from our code and it survives only in few specific
domains. For example is still be used for JavaDoc:

With the adoption of server side technologies like JSP, ASP or PHP the tag <frame> has been replaced
by a template-based approach where we divide our page layout into some common areas that will be
present in each page of our web application. Then, we manually insert these areas in every page
including the appropriate markup fragments.

In this chapter we will see how to use Wicket to build a site layout. The sample layout we will use is a
typical page layout consisting of the following areas:

• a header which could contain site title, some logos, a navigation bar, etc...
• a left menu with a bunch of links to different areas/functionalities of the site.
• a footer with generic informations like web master's email, the company address, etc...

Wicket free user guide 15

Illustration 3.1: The new look of JavaDoc 7

3 Wicket as page layout manager

• a content area which usually contains the functional part of the page.

The following picture summarises the layout structure:

Once we have chosen a page layout, our web designer can start building up the site theme. The result
is a beautiful mock of our future web pages. Over this mock we can map the original layout areas7:

7 The mock is taken from charity project Jug4Tenda (http://java.net/projects/jugancona), lead by Italian Jug Marche.

Wicket free user guide 16

Illustration 3.2: An abstract view of layout areas

Illustration 3.3: Layout areas over the theme mock

http://java.net/projects/jugancona

3 Wicket as page layout manager

Now in order to have a consistent layout across all the site, we must ensure that each page will include
the layout areas seen above. With an old template-based approach we must manually put them inside
every page. If we were using JSP we would probably end up using include directive to add layout
areas in our pages. We would have one include for each of the areas (except for the content):

Note

For the sake of simplicity we can consider each included area as a static HTML

fragment.

Now let's see how we can handle the layout of our web application using Wicket.

3.2 Here comes the inheritance!
The need of ensuring a consistent layout across our pages unveiled a serious limit of HTML language:

the inability to apply inheritance to web pages and their markup. Wouldn't be great if we could write our
layout once in a page and then inherit it in the other pages of our application?

One of the goal of Wicket is to overcome this kind of limit.

3.2.1 Markup inheritance

As we have seen in the previous chapter, Wicket pages are pure Java classes, so we can easily write
a page which is a subclass of another parent page.

But in Wicket inheritance is not limited to the classic object-oriented code inheritance. When a class
subclasses a WebPage it also inherits the HTML file of to the parent class. This type of inheritance is
called markup inheritance.

To better illustrate this concept let's consider the following example where we have a page class called
GenericSitePage with the corresponding HTML file GenericSitePage.html. Now let's create a
specific page called OrderCheckOutPage where users can check out their orders on our our web site.

Wicket free user guide 17

Illustration 3.4: Layout areas are assembled with include directive

3 Wicket as page layout manager

This class extends GenericSitePage but we don't provide it with any corresponding HTML file.
In this scenario OrderCheckOutPage will use GenericSitePage.html as markup file:

Markup inheritance comes in handy for page layout management as it avoids us the burden of
checking that each page conforms to site layout. However to fully take advantage of markup inheritance
we must first learn how to use another important component of the framework that supports this feature:
the panel.

 Warning

If no markup is found (nor directly assigned to the class, neither inherited from an
ancestor) a MarkupNotFoundException is thrown.

3.2.2 Panel class

Class org.apache.wicket.markup.html.panel.Panel is a special component which let us
reuse GUI code and HTML markup across different pages and different web applications. It shares a
common ancestor class with WebPage class, which is org.apache.wicket.MarkupContainer:

Wicket free user guide 18

Illustration 3.6: Hierarchy of WebPage and Panel classes

Illustration 3.5: Page OrderCheckOutPage hasn't a corresponding HTML file. It
will use the one from parent page (GeneralSitePage.html).

3 Wicket as page layout manager

Subclasses of MarkupContainer can contain children components that can be added with method
add(Componet...)(seen in chapter 2.3).
MarkupContainer implements a full set of methods to manage children components. The basic

operations we can do on them are:
• add one or more children components (with method add).
• remove a specific child component (with methods remove).
• retrieve a specific child component with method get(String). The string parameter is the id

of the component or its relative path if the component is nested inside other
MarkupContainers. This path is a colon-separated string containing also the ids of the
intermediate containers traversed to get to the child component. To illustrate an example of
component path, let's consider the code of the following page:

MyPanel myPanel = new MyPanel ("innerContainer");

add(myPanel);

Component MyPanel is a custom panel containing only a label having "name" as id. Under
these conditions we could retrieve this label from the container page using the following path
expression:

Label name = (Label)get("innerContainer:name");

• replace a specific child component with a new component having the same id (with method
replace).

• iterate thought children components with the iterator returned by method iterator or using
visitor pattern8 with methods visitChildren.

Both Panel and WebPage have their own associated markup file which is used to render the
corresponding component. If such file is not provided, Wicket will apply markup inheritance looking for a
markup file through their ancestor classes. When a panel is attached to a container, the content of its
markup file is inserted into its related tag.

While panels and pages have much in common, there are some notable differences between these
two components that we should keep in mind.

The main difference between them is that pages can be rendered as standalone entities while panels
must be placed inside a page to be rendered.

Another important difference is the content of their markup file: for both WebPage and Panel this is a
standard HTML file, but Panel uses a special tag to indicate which part of the whole file will be
considered as markup source. This tag is <wicket:panel>. A markup file for a panel will typically look like
this:

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
...
</head>
<body>
 <wicket:panel>
 <!-- Your markup goes here -->
 </wicket:panel>
</body>

The HTML outside tag <wicket:panel> will be removed during rendering phase. The space outside this

8 http://en.wikipedia.org/wiki/Visitor_pattern

Wicket free user guide 19

http://en.wikipedia.org/wiki/Visitor_pattern

3 Wicket as page layout manager

tag can be used by both web developers and web designers to place some mock HTML to show how
the final panel should look like.

3.3 Divide et impera!
Let's go back to our layout example. In chapter 3.1 we have divided our layout in common areas that

must be part of every page. Now we will build a reusable template page for our web application
combining page and panels. The code examples are from project MarkupInheritanceExample.

3.3.1 Panels and layout areas

First, let's build a custom panel for each layout area (except for 'content' area). For example given the
header area

we can build a panel called HeaderPanel with a related markup file called HeaderPanel.html
containing the HTML for this area:

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
...
</head>
<body>
 <wicket:panel>
 <table width="100%" style="border: 0px none;">
 <tbody>
 <tr>
 <td>

 </td>
 <td>
 <h1>Gestione Anagrafica</h1>
 </td>
 </tr>
 </tbody>
 </table>
 </wicket:panel>
</body>
<html>

The class for this panel simply extends base class Panel:

package helloWorld.layoutTenda;

import org.apache.wicket.markup.html.panel.Panel;

public class HeaderPanel extends Panel {

public HeaderPanel(String id) {
super(id);

}
}

For each layout area we will build a panel like the one above that holds the appropriate HTML markup.
In the end we will have the following set of panels:

• HeaderPanel

Wicket free user guide 20

3 Wicket as page layout manager

• FooterPanel
• MenuPanel

Content area will change from page to page, so we don't need a reusable panel for it.

3.3.2 Template page

Now we can build a generic template page using our brand new panels. Its markup is quite
straightforward :

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
...
<!--Include CSS-->
...
</head>
<body>
<div id="header" wicket:id="headerPanel">header</div>
<div id="body">

<div id="menu" wicket:id="menuPanel">menu</div>
<div id="content" wicket:id="content">content</div>

</div>
<div id="footer" wicket:id="footerPanel">footer</div>
</body>
</html>

The HTML code for this page implements the generic left-menu laytout of our site. You can note the 4
<div> tags used as containers for the corresponding areas.

The page class contains the code to physically assemble page and panels:

package helloWorld.layoutTenda;

import org.apache.wicket.markup.html.WebPage;

public class JugTemplate extends WebPage {
public static final String CONTENT_ID = "contentComponent";

private Component headerPanel;
private Component menuPanel;
private Component footerPanel;

 public JugTemplate(){

add(headerPanel = new HeaderPanel("headerPanel"));
add(menuPanel = new MenuPanel("menuPanel"));
add(footerPanel = new FooterPanel("footerPanel"));
add(new Label(CONTENT_ID, "Put your content here"));

}

 //getters for layout areas
 //...
}

Done! Our template page is ready to be used. Now all the pages of our site will be subclasses of this
parent page and they will inherit the layout and the HTML markup. They will only substitute the Label
inserted as content area with their custom content.

3.3.3 Final example

As final example we will build the login page for our site. We will call it SimpleLoginPage. First, we

Wicket free user guide 21

3 Wicket as page layout manager

need a panel containing the login form. This will be the content area of our page. We will call it
LoginFormPanel and the markup is the following:

<html>

<head>

...

</head>

<body>

 <wicket:panel>

 <div style="margin: auto; width: 40%;">

 <form id="loginForm" method="get">

 <fieldset id="login" class="center">

 <legend >Login</legend>

 Username: <input type="text" id="username”/>

 Password: <input type="password" id="password" />

 <p>

 <input type="submit" name="login" value="login"/>

 </p>

 </fieldset>

 </form>

 </div>

 </wicket:panel>

</body>

</html>

The class for this panel just extends Panel class so we won't see the relative code. The form of this
panel is for illustrative purpose only. We will see how to work with Wicket forms in chapters 9 and 10.

Since this is a login page we don't want it to display left menu area. That's not a big deal as
Component class exposes a method called setVisible which sets whether the component and its
children should be displayed.

The resulting Java code for login page is the following:

package helloWorld.layoutTenda;

import helloWorld.LoginPanel;

import org.apache.wicket.event.Broadcast;

import org.apache.wicket.event.IEventSink;

public class SimpleLoginPage extends JugTemplate {

public SimpleLoginPage(){

super();

replace(new LoginPanel(CONTENT_ID));

getMenuPanel().setVisible(false);

}

}

Obviously this page doesn't come with a related markup file. You can see the final page in the
following picture:

Wicket free user guide 22

3 Wicket as page layout manager

3.4 Markup inheritance with <wicket:extend> tag
With Wicket we can apply markup inheritance using another approach based on tag <wicket:child>.

This tag is used inside parent's markup to define where children pages/panels can “inject” their custom
markup extending the markup inherited from parent component.

An example of parent page using tag <wicket:child> is the following:

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 ...
</head>
<body>
 This is parent body!

<wicket:child/>
</body>
</html>

The markup of a child page/panel must be placed inside tag <wicket:extend>. Only the markup inside
<wicket:extend> will be included in final markup. Here is an example of child page markup:

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 ...
</head>
<body>
 <wicket:extend>
 This is child body!

</wicket:extend>
</body>
</html>

Considering the two pages seen above, the final markup generated for child page will be the following:

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 ...
</head>
<body>

Wicket free user guide 23

Illustration 3.7: Final login page

3 Wicket as page layout manager

 This is parent body!

<wicket:child>
 <wicket:extend>
 This is child body!

</wicket:extend>
 </wicket:child>
</body>
</html>

3.4.1 Our example revisited

Applying <wicket:child> tag to our layout example, we obtain the following markup for the main
template page:

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 ...
</head>
<body>
<div id="header" wicket:id="headerPanel">header</div>
<div id="body">

<div id="menu" wicket:id="menuPanel">menu</div>
<wicket:child/>

</div>
<div id="footer" wicket:id="footerPanel">footer</div>
</body>
</html>

We have replaced the <div> tag of the content area with tag <wicket:child>. Going ahead with our

example we can build a login page creating class SimpleLoginPage which extends page
JugTemplate, but with a related markup file like this:

<html>

<head>

...

</head>

<body>

 <wicket:extend>

 <div style="margin: auto; width: 40%;">

 <form id="loginForm" method="get">

 <fieldset id="login" class="center">

 <legend >Login</legend>

 Username: <input type="text" id="username”/>

 Password: <input type="password" id="password" />

 <p>

 <input type="submit" name="login" value="login"/>

 </p>

 </fieldset>

 </form>

 </div>

 </wicket:extend>

</body>

</html>

As we can see this approach doesn't require to create custom panels to use as content area and it can

Wicket free user guide 24

3 Wicket as page layout manager

be useful if we don't have to handle a GUI with a high degree of complexity.

3.5 Summary
Wicket applies inheritance also to HTML markup making layout management much easier and less

error-prone. Defining a master template page to use as base class for the other pages is a great way to
build a consistent layout and use it across all the site.

 During the chapter we have also introduced component Panel, a very important Wicket class that is
primarily designed to let us divide our pages in smaller and reusable UI components.

Wicket free user guide 25

4 Keeping control over HTML

4 Keeping control over HTML

Many Wicket newbies are initially scared by its approach to web development because they have the
impression that the component-oriented nature of the framework prevents them from having direct
control over the generated markup. This is due to the fact that many developers come from other server-
side technologies like JSP where we physically implement the logic that controls how the final HTML is
generated.

This chapter will avoid you any initial misleading feeling about Wicket showing how to control and
manipulate the generated HTML with the built-in tools shipped with the framework.

4.1 Hiding or disabling a component
At the end of the previous chapter we have seen how to hide a component calling its method
setVisible. In a similar fashion, we can also decide to disable a component using method
setEnabled. When a component is disabled all the links inside it will be in turn disabled (they will be
rendered as)9 and it can not fire JavaScript events.

Class Component provides two getter methods to determinate if a component is visible or enabled:
isVisible and isEnabled.

Even if nothing prevents us from overriding these two methods to implement a custom logic to
determinate the state of a component, we should keep in mind that methods isVisible and
isEnabled are called multiple times before a component is fully rendered. Hence, if we place non-
trivial code inside these two methods, we can sensibly deteriorate the responsiveness of our pages.

As we will see in the next chapter, class Component provides method onConfigure which is more
suited to contain code that contributes to determinate component states because it is called just once
during rendering phase.

4.2 Modifing tag attributes
To modify tag attributes we can use class org.apache.wicket.AttributeModifier. This class

extends org.apache.wicket.behavior.Behavior and can be added to any component with
Component's method add. Class Behavior is used to expand component functionalities and it can
also modify component markup. We will see this class in detail later in paragraph 15.1.

As first example of attribute manipulation let's consider a Label component bound to the following
markup:

Suppose we want to add some style to label content making it red and bolded. We can add to the label
an AttributeModifier which creates the tag attribute style with value "color:red;font-
weight:bold":

label.add(new AttributeModifier("style", "color:red;font-weight:bold"));

If attribute style already exists in the original markup, it will be replaced with the value specified by
AttributeModifier. If we don't want to overwrite the existing value of an attribute we can use

9 The markup used to render disabled links can be customized as described at the end of paragraph 8.3

Wicket free user guide 26

4 Keeping control over HTML

subclass AttributeAppender which will append its value to the existing one:

label.add(new AttributeAppender("style", "color:red;font-weight:bold"));

We can also create attribute modifiers using factory methods provided by class AttributeModifier
and it's also possible to prepend a given value to an existing attribute:

//replaces existing value with the given one

label.add(AttributeModifier.replace("style", "color:red;font-weight:bold"));

//appends the given value to the existing one

label.add(AttributeModifier.append("style", "color:red;font-weight:bold"));

//prepends the given value to the existing one

label.add(AttributeModifier.prepend("style", "color:red;font-weight:bold"));

4.3 Generating tag attribute 'id'
Tag attribute id plays a crucial role in web development as it allows JavaScript to identify a DOM

element. That's why class Component provides two dedicated methods to set this attribute.
With method setOutputMarkupId(boolean output) we can decide if the id attribute will be

rendered or not in the final markup (by default is not rendered). The value of this attribute will be
automatically generated by Wicket and it will be unique for the entire page. If we need to specify this
value by hand, we can use method setMarkupId(String id).

The value of the id can be retrieved with method getMarkupId().

4.4 Creating panels “on the fly” with WebMarkupContainer
Create custom panels is a great way to handle complex user interfaces. However, sometimes we may

need to create a panel which is used only by a specific page and only for a specific task.
In situations like these component org.apache.wicket.markup.html.WebMarkupContainer is

better suited than custom panels because it can be directly attached to a tag in the parent markup
without needing a corresponding html file (hence it is less reusable).

Let's consider for example the main page of a mail service where users can see a list of received
mails. Suppose that this page shows a notification box where user can see if new messages are arrived.
This box must be hidden if there are no messages to display and it would be nice if we could handle it
as if it was a Wicket component.

Suppose also that this information box is a <div> tag like this inside the page:

<div wicket:id="informationBox">

//here's the body

...

 You've got new messages.

...

</div>

Under these conditions we can consider to use a WebMarkupContainer component rather than
implementing a new panel. The code needed to handle the information box inside the page could be the
following:

Wicket free user guide 27

4 Keeping control over HTML

//Page initialization code

...

WebMarkupContainer informationBox = new WebMarkupContainer ("informationBox");

informationBox.add(new Label("messagesNumber", messagesNumber));

add(informationBox);

...

//If there are no new messages, hide informationBox

informationBox.setVisible(false);

As you can see in the snippet above we can handle our information box from Java code as we do with
any other Wicket component.

4.5 Working with markup fragments
Another circumstance in which we may prefer to avoid the creation of custom panels is when we want

to conditionally display in a page small fragments of markup. In this case if we decided to use panels,
we would end up having a huge number of small panel classes with their related markup file.

To better cope with situations like this, Wicket defines component Fragment in package org.
apache.wicket.markup.html.panel. Just like its parent component WebMarkupContainer,
Fragment doesn't have an own markup file but it uses a markup fragment defined in the markup file of
its container, which can be a page or a panel. The fragment must be delimited with tag
<wicket:fragment> and must be identified by a wicket:id attribute. In addition to the component id,
Fragment's constructor takes in input also the id of the fragment and a reference to its container.

In the following example we have defined a fragment in a page and we used it as content area:

Page markup:

<html>

 ...

<body>

...

<div wicket:id="contentArea"></div>

<wicket:fragment wicket:id="fragmentId">

 <!-- Fragment markup goes here -->

</wicket:fragment>

</body>

</html>

Page code:

Fragment fragment = new Fragment ("contentArea", "fragmentId", this);

add(fragment);

Fragments can be very helpful with complex pages or components. For example let's say that we
have a page where users can register to our forum. This page should first display a form where user
must insert his/her personal data (name, username, password, email and so on), then, once user has
submitted10 the form, the page should display a message like “Your registration is complete! Please
check your mail to activate your user profile.”.

Instead of displaying this message with a new component or in a new page, we can define two

10 Form component will be introduced in chapter 9

Wicket free user guide 28

4 Keeping control over HTML

fragments: one for the initial form and one to display the confirmation message. The second fragment
will replace the first one after the form has been submitted:

Page markup:

<html>

 ...

<body>

...

<div wicket:id="contentArea"></div>

<wicket:fragment wicket:id="formFrag">

 <!-- Form markup goes here -->

</wicket:fragment>

<wicket:fragment wicket:id="messageFrag">

 <!-- Message markup goes here -->

</wicket:fragment>

</body>

</html>

Page code:

Fragment fragment = new Fragment ("contentArea", "formFrag", this);

add(fragment);
//...

//form has been submitted
Fragment fragment = new Fragment ("contentArea", "messageFrag", this);

replace(fragment);

4.6 Adding header contents to the final page
Panel's markup can also contain HTML tags which must go inside header section of the final page, like

tags <script> or <style>. To tell Wicket to put these tags inside page <head>, we must surround them
with tag <wicket:head>.

Considering the markup of a generic panel, we can use tag <wicket:head> in this way:

<wicket:head>

<script type="text/javascript">

 function myPanelFunction(){

 }

 </script>

<style>

 .myPanelClass{

 font-weight: bold;

 color: red;

 }
 </style>

</wicket:head>

<body>

<wicket:panel>

 ...

</wicket:panel>

 ...

</body>

Wicket free user guide 29

4 Keeping control over HTML

Wicket will take care of placing the content of <wicket:head> inside the <head> tag of the final page.

Note

Tag <wicket:head> can be used also with children pages/panels which extend
parent markup using tag <wicket:extend>.

Note

The content of tag <wicket:head> is added to header section once per
component class. In other words, if we add multiple instances of the same panel
to a page, the <head> tag will be populated just once with the content of
<wicket:head>.

 Warning

Tag <wicket:head> is ideal if we want to define small in-line blocks of CSS or
JavaScript. However Wicket provides also a more sophisticated technique to let
components contribute to header section with in-line blocks and resource files
like CSS or JavaScript files. We will see this technique later in chapter 13.

4.7 Using stub markup in our pages/panels
Wicket tag <wicket:remove> can be very useful when our web designer needs to show us how a page

or a panel should look like. The markup inside this tag will be stripped out in the final page, so it's the
ideal place for web designers to put their stub markup:

<html>

<head>

...

</head>

<body>

...

<wicket:remove>

 <!-- Stub markup goes here -->

</wicket:remove>

</body>

</html>

4.8 How to render component body only
When we bind a component to its corresponding tag we can choose to get rid of this outer tag in the

final markup. If we call method setRenderBodyOnly(true) on a component Wicket will remove the
surrounding tag.

For example given the following markup and code:

Markup:

<html>

<head>

 <title>Hello world page</title>

</head>

Wicket free user guide 30

4 Keeping control over HTML

<body>

<div wicket:id="helloWorld">[helloWorld]</div>

</body>

</html>

Java code:

Label label = new Label("helloWorld", “Hello World!”);

label.setRenderBodyOnly(true);

add(label);

the output will be:

<html>

<head>

 <title>Hello world page</title>

</head>

<body>

 Hello World!

</body>

</html>

As you can see the <div> tag used for component Label is not present in the final markup.

4.9 Hiding decorating elements with tag <wicket:enclosure>
Our data are rarely displayed alone without a caption or other graphic elements that make clear the

meaning of their value. For example:

<label>Total amount: </label>

 Wicket comes with a nice utility tag called <wicket:enclosure> that automatically hides those
decorating elements if the related data value is not visible. All we have to do is to put the involved
markup inside this tag. Applying <wicket:enclosure> to the previous example we get the following
markup:

<wicket:enclosure>

 <label>Total amount: </label>

</wicket:enclosure>

Now if component totalAmount is not visible, its description (Total amount:) will be automatically
hidden. If we have more then a Wicket component inside <wicket:enclosure> we can use child attribute
to specify which component will control the overall visibility:

<wicket:enclosure child="totalAmount">

 <label>Total amount: </label>

 <label>Expected delivery date: </label>

</wicket:enclosure>

Wicket free user guide 31

4 Keeping control over HTML

child attribute supports also nested components with a colon-separated path:

<wicket:enclosure child="totalAmountContainer:totalAmount">

 <div wicket:id="totalAmountContainer">

<label>Total amount: </label>

 </div>

 <label>Expected delivery date: </label>

</wicket:enclosure>

4.10 Surrounding existing markup with Border
Component org.apache.wicket.markup.html.border.Border is a special purpose container

created to enclose its tag body with its related markup. Just like panels and pages also borders have an
own markup file which is defined following the same rules seen form panels and pages. In this file tag
<wicket:border> is used to indicate which part of the content is to be considered as border markup:

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:wicket="http://wicket.apache.org">

<head></head>

<body>

 <!-- everything above <wicket:border> tag will be discarded...-->

 <wicket:border>

 <div>

 foo

 <wicket:body/>

 buz

 </div>

 </wicket:border>

 <!-- everything below </wicket:border> tag will be discarded...-->

</body>

</html>

The tag <wicket:body/> used in the example above is used to indicate where the body of the tag will be
placed inside border markup. Now if we attached this border to the following tag

 bar

we would obtain the following resulting HTML:

<div>

 foo

 bar

 buz

</div>

Border can also contain children components which can be placed either inside its markup file or

Wicket free user guide 32

4 Keeping control over HTML

inside its corresponding HTML tag. In the first case children must be added to border component with
method addToBorder(Component...), while in the second case we must use the usual method
add(Component...).

In the following table you can see an example that illustrates both cases:

Border class:

public class MyBorder extends Border {

public MyBorder(String id) {

super(id);

}

}

Border markup:

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:wicket="http://wicket.apache.org">

<head></head>

<body>

 <wicket:border>

 <div>

 <div wicket:id="childMarkup"></div>

 <wicket:body/>

 </div>

 </wicket:border>

</body>

</html>

Border tag:

<div wicket:id="myBorder">

</div>

Initialization code for border11:

MyBorder myBorder = new MyBorder("myBorder");

myBorder.addToBorder(new Label("childMarkup", "Child inside markup."));

myBorder.add(new Label("childTag", "Child inside tag."));

add(myBorder);

4.11 Summary
In this chapter we have seen the tools provided by Wicket to gain a complete control over the

generated HTML. However we didn't see yet how we can repeat a portion of HTML with Wicket. With
classic server-side technologies like PHP or JSP we use to do this by using loop constructors (like
while or for) inside our pages.

11 Initialization code should go inside component's constructor or inside its method onInitialize (we will see this method in the next chapter)

Wicket free user guide 33

4 Keeping control over HTML

To perform this task Wicket provides a special-purpose family of components called repeaters and
designed to repeat their markup body to display a set of items.

But to fully understand how these components work, we must learn first some other basic topics of
Wicket. That's why repeaters will be introduced later in chapter 11.

Wicket free user guide 34

5 Components lifecycle

5 Components lifecycle

Just like applets12 and servlets13, also Wicket components follow a lifecycle during their existence. In
this chapter we will analyse each stage of this cycle and we will learn how to make the most of the hook
methods that are triggered when a component moves from a stage to another.

5.1 Lifecycle stages of a component
During its life a Wicket component goes through three basic stages:

1. Initialization: Component is instantiated by Wicket and prepared for rendering phase.
2. Rendering: in this stage Wicket generates component markup. If component contains

children (i.e. is a subclass of MarkupContainer) it must first wait for them to be rendered
before starting its own rendering.

3. Removing: this stage is triggered when a component is explicitly removed from its
component hierarchy, i.e. when its parent invokes remove(component)on it. This stage
is facultative and is never triggered for pages.

The following picture shows the state diagram of component lifecycle:

Once a component has been removed it can be added again to a container, but the initialization stage
won't be executed again.

Note

If you read the JavaDoc of class Component you will find a more detailed
description of component lifecycle.
However this description introduces some advanced topics we didn't covered yet
hence, to avoid confusion, in this chapter some details have been omitted and
they will be covered later in the next chapters.
For now you can consider just the simplified version of the lifecycle described
above.

5.2 Hook methods for component lifecycle
Class Component comes with a number of hook methods that can be overridden in order to customize

component behavior during its lifecycle.

12 See http://download.oracle.com/javase/tutorial/deployment/applet/lifeCycle.html
13 See “Servlet Life Cycle ” paragraph of Servlet Specification document

Wicket free user guide 35

Initializing Rendering Removing

http://download.oracle.com/javase/tutorial/deployment/applet/lifeCycle.html

5 Components lifecycle

In the following table these methods are grouped according to the stage in which they are invoked:

Cycle stage Involved methods
Initialization • onInitialize

Rendering

• onConfigure

• onBeforeRender

• onRender

• onAfterRender

• onAfterRenderChildren

• onComponentTag

• onComponentTagBody

Removing • onRemove

Now let's take a closer look at each stage and to its hook methods.

5.3 Initialization stage
This stage is performed at the beginning of component lifecycle. During initialization, component has

already been inserted into its component hierarchy so we can safely access to its parent container or to
its page with methods getParent() or getPage().

The only method triggered during this stage is onInitialize(). This method is a sort of “special”
constructor where we can execute a more sophisticated initialization of our component.

Since onInitialize is similar to a regular constructor, when we override this method we have to call
super.onInitialize inside its body, usually as first instruction.

5.4 Rendering stage
This stage is triggered each time a component is rendered by Wicket, typically when its page is

requested or when it is refreshed via AJAX14.

5.4.1 Method onBeforeRender

The most important hook method of this stage is probably onBeforeRender(). This method is called
before component starts its rendering phase and it is our last chance to change its children hierarchy. If
we want add/remove children components this is the right place to do it.

In the next example (project LifeCycleStages) we will create a page which alternately displays two
different labels, swapping between them each time it is rendered:

public class HomePage extends WebPage

{

private Label firstLabel;

private Label secondLabel;

public HomePage(){

firstLabel = new Label("label", "First label");

secondLabel = new Label("label", "Second label");

14 AJAX support will be discussed in chapter 16.

Wicket free user guide 36

5 Components lifecycle

add(firstLabel);

add(new Link("reload"){

@Override

public void onClick() {

}

});

}

@Override

protected void onBeforeRender() {

if(contains(firstLabel, true))

replace(secondLabel);

else

replace(firstLabel);

super.onBeforeRender();

}

}

The code inside onBeforeRender() is quite trivial as it just checks which label among firstLabel
and secondLabel is currently inserted into component hierarchy and it replaces the inserted label with
the other one.

This method is also responsible for invoking children onBeforeRender() so if we decide to override
it we have to call super.onBeforeRender(). However, unlike onInitialize(), the call to
superclass method should be placed at the end of method's body in order to affect children's rendering
with our custom code.

Please note that in the example above we can trigger the rendering stage pressing F5 key or clicking
on link “reload”.

 Warning

If we forget to call superclass version of methods onInitialize() or
onBeforeRender(), Wicket will throw an IllegalStateException with the
following message:

java.lang.IllegalStateException: org.apache.wicket.Component has not been
properly initialized. Something in the hierarchy of <page class name> has
not called super.onInitialize()/onBeforeRender() in the override of
onInitialize()/ onBeforeRender() method

5.4.2 Method onConfigure

Method onConfigure() has been introduced in order to provide a good point to manage component
states such as visibility or enabling. This method is called before the beginning of rendering phase.

As stated in paragraph 4.1, isVisible and isEnabled are called multiple times when a page or a
component is rendered, so is highly recommended to not directly override these method, but rather to
use onConfigure to change component states.

On the contrary method onBeforeRender is not indicated for this task because it will not be invoked if
component visibility is set to false.

5.4.3 Method onComponentTag

Method onComponentTag(ComponentTag) is called to process component tag, which can be freely
manipulated through its argument of type org.apache.wicket.markup.ComponentTag. For
example we can add/remove tag attributes with methods put(String key, String value) and

Wicket free user guide 37

5 Components lifecycle

remove (String key), or we can even decide to change the tag renaming it with method
setName(String)(the following code is taken from project OnComponentTagExample):

Markup code:

<head>

 <meta charset="utf-8" />

 <title></title>

</head>

<body>

 <h1 wicket:id="helloMessage"></h1>

</body>

Java code:

public class HomePage extends WebPage {

 public HomePage() {

 add(new Label("helloMessage", "Hello World"){

 @Override

 protected void onComponentTag(ComponentTag tag) {

 super.onComponentTag(tag);

 //Turn the h1 tag to a span

 tag.setName("span");

 //Add formatting style

 tag.put("style", "font-weight:bold");

 }

 });

 //...

 }

}

Gnerated markup:

<head>

 <meta charset="utf-8" />

 <title></title>

</head>

<body>

 Hello World

</body>

Just like we do with onInitialize, if we decide to override onComponentTag we must remember to
call the same method on the super class because also this class may need to customize the tag.

Overriding onComponentTag is perfectly fine if we have to customize the tag of a specific component,
but if we wanted to reuse the code across different components we should consider to use a behavior in
place of this hook method.

We have already seen in paragraph 4.2 how to use behavior AttributeModifier to manipulate
tag's attribute. In paragraph 15.1 we will see that base class Behavior offers also a callback method
named onComponentTag(ComponentTag, Component) that can fully replace hook method
onComponentTag(ComponentTag).

5.4.4 Methods onComponentTagBody

Method onComponentTagBody(MarkupStream, ComponentTag) is called to process component
tag's body. Just like onComponentTag it takes in input a ComponentTag parameter representing the

Wicket free user guide 38

5 Components lifecycle

component tag. In addition, we find also a MarkupStream parameter which represents the page
markup stream that will be sent back to the client as response.
onComponentTagBody can be used in combination with Component's method replaceComponent
TagBody to render a custom body under specific conditions. For example (taken from project
OnComponentTagExample) we can display a brief description instead of the body if label component is
disabled:

public class HomePage extends WebPage {

 public HomePage() {

 //...

 add(new Label("helloMessage", "Hello World"){

 @Override

 protected void onComponentTagBody(MarkupStream markupStream, ComponentTag tag) {

 if(!isEnabled())

 replaceComponentTagBody(markupStream, tag, "(the component is disabled)");

 else

 super.onComponentTagBody(markupStream, tag);

 }

 });

 }

}

Please note that the original version of onComponentTagBody is invoked only when we want to
preserve the standard rendering mechanism for tag's body (in our example this happens when the
component is enabled).

5.5 Removing stage
This stage is triggered when a component is removed from its component hierarchy. The only hook

method for this phase is onRemove(). If our component still holds some resources needed during
rendering phase, we can override this method to release them.

Once a component has been removed we are free to add it again to the same container or to another
one.

5.6 Summary
In this chapter we have seen which stages compose the lifecycle of a Wicket component and which

hook methods they provide. Overriding these methods we can dynamically modify component hierarchy
and we can enrich the behavior of our custom components.

Wicket free user guide 39

6 Page versioning and caching

6 Page versioning and caching

This chapter explains how Wicket manages page instances, underlining the difference between stateful
and stateless pages. The chapter introduces also some advanced topics like Java Serialization and
multi-level cache. However, to understand what you will read you are not required to be familiar with
these arguments.

6.1 Stateful pages VS stateless
Wicket pages can be divided into two categories: stateful and stateless pages. Stateful pages are

those which rely on user session to store they internal state and to keep track of user interaction.
On the contrary stateless pages are those which don't change their internal state during their lifecycle

and they don't need to occupy space into user session.
From the point of view of the framework the biggest difference between these two types of page is that

stateful pages are versioned, meaning that they will be saved into user session every time their internal
state has changed. Wicket automatically assigns a session to user the first time a stateful page is
requested. Page versions are stored into user session using Java Serialization mechanism.

Stateless pages are never versioned and that's why they don't require a valid user session. If we want
to know whether a page is stateless or not, we can use method isPageStateless() of class Page.

In order to build a stateless page we must comply with some rules to ensure that page won't need to
use user session. These rules are illustrated in paragraph 6.3 but before talking about stateless pages
we must first understand how stateful pages are handled and why they are versioned.

6.2 Stateful pages
Stateful pages are versioned in order to support browser's back button: when this button is pressed

Wicket must respond rendering the same page instance previously used.
A new page version is created when a stateful page is requested for the first time or when an existing

instance is modified (for example changing its component hierarchy). To identify each page version
Wicket uses a session-relative identifier called page id. This is a progressive number and it is increased
every time a new page version is created.

In the final example of the previous chapter (project LifeCycleStages), you may have noticed the
number appended at the and of URL. This number is the page id we are talking about:

In this chapter we will use a revisited version of this example project where component hierarchy is
modified inside Link's onClick()method. This is necessary because Wicket creates a new page
version only if page is modified before its method onBeforeRender() is invoked. The code of the new

Wicket free user guide 40

Illustration 6.1: Page id at the end of URL

6 Page versioning and caching

home page is the following:

public class HomePage extends WebPage

{

private static final long serialVersionUID = 1L;

private Label firstLabel;

private Label secondLabel;

public HomePage(){

firstLabel = new Label("label", "First label");

secondLabel = new Label("label", "Second label");

add(firstLabel);

add(new Link("reload"){

@Override

public void onClick() {

if(getPage().contains(firstLabel, true))

getPage().replace(secondLabel);

else

getPage().replace(firstLabel);

}

});

}

}

Now if we run the new example (project LifeCycleStagesRevisited) and we click on “Reload” button, a
new page version is created and page id is increased by one:

If we press the back button the page version previously rendered will be retrieved and it will be used
again to respond to our request (and page id is decremented):

Wicket free user guide 41

Illustration 6.2: pressing “Reload” button causes page id to increment

Illustration 6.3: pressing “Back” button we can go back to the previous page version
(page id is decremented)

6 Page versioning and caching

Note

For more details about page storing you can visit the wiki page at
https://cwiki.apache.org/confluence/display/WICKET/Page+Storage.
On this page you can find which classes are involved into page storing
mechanism and how they work together.

As we have previously told at the beginning of this chapter, page versions are stored using Java
serialization, therefore every object referenced inside a page must be serializable15. In paragraph 9.6 we
will see how to overcome this limit and work with non-serializable objects in our components using
Wicket models.

6.2.1 Using a specific page version with PageReference

To retrieve a specific page version in our code we can use class org.apache.wicket.
PageReference using the corresponding page id as argument for its constructor:

//load page version with page id = 3

PageReference pageReference = new PageReference(3);

//load the related page instance

Page page = pageReference.getPage();

To get the related page instance we must use method getPage.

6.2.2 Turning off page versioning

If for any reason we need to switch off versioning for a given page, we can call its method
setVersioned(false).

6.2.3 Pluggable serialization

Starting from version 1.5 it is possible to choose which implementation of Java serialization will be
used by Wicket to store page versions. Wicket serializes pages using an implementation of interface
org.apache.wicket.serialize.ISerializer. The default implementation is org.apache
.wicket.serialize.java.JavaSerializer and it uses the standard Java serialization
mechanism based on classes ObjectOutputStream and ObjectInputStream. However on
Internet we can find other interesting serialization libraries like Kryo16 which performs faster then the
standard implementation.

The serializer in use can be customized with method setSerializer(ISerializer) defined by
setting interface org.apache.wicket.settings.IFrameworkSettings. We can access this
interface inside init method of class Application using method getFrameworkSettings():

@Override

public void init()

{

super.init();

getFrameworkSettings().setSerializer(yourSerializer);

}

A serializer based on Kryo library is available with project WicketStuff. You can find more information
on this project, as well as the instructions to use its modules, in Appendix B.

6.2.4 Page caching

15 It must implement standard interface java.io.Serialization
16 http://code.google.com/p/kryo/

Wicket free user guide 42

http://code.google.com/p/kryo/
https://cwiki.apache.org/confluence/display/WICKET/Page+Storage

6 Page versioning and caching

By default Wicket persists pages versions into a session-relative file on disk, but it uses a two-levels
cache to speed up this process. The first level of the cache uses a http session attribute called
“wicket:persistentPageManagerData-<APPLICATION_NAME>” to store pages. The second level cache
stores pages into application-scoped variables which are identified by a session id and a page id.

The following picture is an overview of these two caching levels:

The session-scoped cache is faster then the other memory levels but it contains only the pages used
to serve the last request.

Wicket allows us to set the maximum amount of memory allowed for the application-scoped cache and
for the page store file. Both parameters can be configured using setting interface org.apache.
wicket.settings.IStoreSettings.

The interface provides method setMaxSizePerSession(Bytes bytes) to set the size for page
store file. The Bytes parameter is the maximum size allowed for this file:

@Override

public void init()

{

super.init();

getStoreSettings().setMaxSizePerSession(Bytes.kilobytes(500));

}

Class org.apache.wicket.util.lang.Bytes is an utility class provided by Wicket to express
size in bytes (for further details see JavaDoc).

For the second level cache we can use method setInmemoryCacheSize(int
inmemoryCacheSize). The integer parameter is the maximum number of page instances that will be
saved into application-scoped cache:

@Override

public void init()

{

super.init();

getStoreSettings().setInmemoryCacheSize(50);

}

6.2.5 Page expiration

Page instances are not kept into user session forever. They can be discarded when the limit set with
method setMaxSizePerSession is reached or (more often) when user session expires. When we ask
Wicket for a page id corresponding to a page instance removed from session, we bump into a
PageExpiredException and we get the following default error page:

Wicket free user guide 43

Illustration 6.4: An overview of Wicket cache structure

6 Page versioning and caching

This error page can be customized with method setPageExpiredErrorPage of setting interface
org.apache.wicket.settings.IApplicationSettings:

@Override

public void init()

{

super.init();

getApplicationSettings().setPageExpiredErrorPage(CustomExpiredErrorPage.class);

}

The page class provided as custom error page must have a public constructor with no argument or a
constructor that takes in input a single PageParameters argument (the page must be bookmarkable
as described in paragraph 8.1.1).

6.3 Stateless pages
Wicket makes it very easy building stateful pages, but sometimes we might want to use an “old school”

stateless page that doesn't keep memory of its state into session. Think for example at the public area of
a site or at a login page: in cases like these a stateful page would be a waste of resources or even a
security threat, as we will see in paragraph 10.9.

In Wicket a page can be stateless only if it satisfies the following requirements:
1. it has been instantiated by Wicket (i.e. we don't create it with operator new) using a constructor

with no argument or a constructor that takes in input a single PageParameters argument
(class PageParameters will be covered in chapter 8).

2. All its children components (and behaviors17) are in turn stateless, which means that their
method isStateless must return true.

The first requirement implies that, rather than creating a page by hand, we should rely on Wicket's
capability of resolving page instances, like we do when we use method setResponsePage(Class
page).

In order to comply with the second requirement it could be helpful to check if all children components of
a page are stateless. To do this we can leverage method visitChildren and visitor pattern to iterate
over components and test if their method isStateless actually returns true:

@Override

protected void onInitialize() {

super.onInitialize();

visitChildren(new IVisitor<Component, Void>() {

@Override

public void component(Component component, IVisit<Void> arg1) {

17 See method getStatelessHint in paragraph 15.1

Wicket free user guide 44

6 Page versioning and caching

if(!component.isStateless())

 System.out.println("Component " + component.getId()

 + " is not stateless");

}

});

}

Alternatively, we could use the utility annotation StatelessComponent along with class
StatelessChecker (they are both in package org.apache.wicket.devutils.stateless).
StatelessChecker will throw an IllegalArgumentException if a component annotated with
StatelessComponent doesn't respect the requirements for being stateless. To use annotation
StatelessComponent we must first add StatelessChecker to our application as component render
listener:

@Override

public void init()

{

super.init();

getComponentPostOnBeforeRenderListeners().add(new StatelessChecker());

}

Note

Most of the built-in components of Wicket are stateful, hence they can not be
used with a stateless page. However some of them have also a stateless
version which can be adopted when we need to keep a page stateless. In the
rest of the guide we will point out when a built-in component comes also with a
stateless version.

A page can be also explicitly declared as stateless setting the appropriate flag to true with method
setStatelessHint(true). This method will not prevent us from violating the requirements for a
stateless page, but if we do so we will get the following warning message into log stream:

Page '<page class>' is not stateless because of component with path '<component path>'

6.4 Summary
In this chapter we have seen how page instances are managed by Wicket. We have learnt that pages

can be divided into two families: stateless and stateful pages. Knowing the difference between the two
types of pages is important to build the right page for a given task.

However, to complete the discussion about stateless pages we still have to deal with two topics we
have just outlined in this chapter: class PageParameters and bookmarkable pages. The first part of
chapter 8 will cover these missing topics.

Wicket free user guide 45

7 Under the hood of request processing

7 Under the hood of request
processing

Although Wicket was born to provide a reliable and comprehensive object oriented abstraction for web
development, sometimes we might need to work directly with “raw” web entities such as user session,
web request, query parameters, and so on. For example this is necessary if we want to store an
arbitrary parameter into user session.

Wicket provides some wrapper classes that allow us to easily access to web entities without the
burden of using the low-level APIs of Java Servlet Specification. However it will always be possible to
access standard classes (like HttpSession, HttpServletRequest, etc...) that lay under our Wicket
application.

This chapter will introduce these wrapper classes and it will explain how Wicket uses them to handle
web requests coming from user.

7.1 Class Application and request processing
Besides configuring and initializing our application, class Application is responsible for creating the

internal entities used by Wicket to process a request. These entities are instances of the following
classes: RequestCycle, Request, Response and Session.

The next paragraphs will illustrate each of these classes, explaining how they are involved into request
processing.

7.2 Classes Request and Response
Classes Request and Response inside package org.apache.wicket.request provide an

abstraction of the concrete request and response used by our application.
Both classes are declared as abstract but if our application class inherits from WebApplication it will

use their sub classes ServletWebRequest and ServletWebResponse, both of them inside package
org.apache.wicket.protocol.http.servlet.
ServletWebRequest and ServletWebResponse wrap respectively a HttpServletRequest and

a HttpServletResponse object. If we need to access to these low-level objects we can call
Request's method getContainerRequest() and Response's method getContainer
Response().

7.3 The “director” of request processing: RequestCycle
Class org.apache.wicket.request.cycle.RequestCycle is the entity in charge of serving a

web request. Our application class creates a new RequestCycle on every request with its method
createRequestCycle(request, response).

Method createRequestCycle is declared as final, so we can't override it to return a custom
subclass of RequestCycle. Instead, we must build a request cycle provider implementing interface
org.apache.wicket.IRequestCycleProvider, and then we must tell our application class to use
it with Application's method setRequestCycleProvider.

The current running request cycle can be retrieved at any time by calling its static method
RequestCycle.get(). Strictly speaking this method returns the request cycle associated with the
current (or local) thread, which is the thread that is serving the current request.

A similar get() method is also implemented in classes org.apache.wicket.Application (as we

Wicket free user guide 46

7 Under the hood of request processing

have seen in paragraph 2.2.2) and org.apache.wicket.Session to get the application and the
session in use with the current thread.

 Note

The implementation of get method takes advantage of the standard class
java.lang.ThreadLocal. See its JavaDoc for an introduction to local-thread
variables.

Class org.apache.wicket.Component provides method getRequestCycle() which is a
convenience method that internally invokes RequestCycle.get():

public final RequestCycle getRequestCycle()

{

return RequestCycle.get();

}

7.3.1 RequestCycle and request processing

 Note

This paragraph will provide just the basic informations about what happens
behind the scenes of request processing. Working with Wicket it's likely that we
will rarely need to customize this process, so we won't cover this topic in detail.

In order to process a request, RequestCycle delegates the task to another entity which implements
interface org.apache.wicket.request.IRequestHandler. There are different implementations
of this interface, each suited for a particular type of requested resource (a page to render, an AJAX
request, an URL to an external page, etc...).

To resolve the right handler for a given request RequestCycle uses a set of objects implementing
interface org.apache.wicket.request.IRequestMapper. This interface defines method
getCompatibilityScore(Request request) which returns a score indicating how compatible the
request mapper is for the current request. RequestCycle will choose the mapper with the highest
score and it will call its method mapRequest(Request request) to get the proper handler for the
given request. Once RequestCycle has resolved a request handler, it invokes its method
respond(IRequestCycle requestCycle) to start request processing.

The following sequence diagram recaps how a request handler is resolved by RequestCycle:

Wicket free user guide 47

7 Under the hood of request processing

Developers can create additional implementations of IRequestMapper and add them to their
application with WebApplication's method mount(IRequestMapper mapper). In paragraph 8.6
we will see how Wicket uses this method to add built-in mappers for mounted pages.

7.3.2 Generating url with methods urlFor and mapUrlFor

RequestCycle is also responsible for generating the URL value (as CharSequence) for the following
entities:

• a page class, with method urlFor(Class<C> pageClass, PageParameters
parameters)

• an IRequestHandler with method urlFor(IRequestHandler handler)
• a ResourceReference with method urlFor(ResourceReference reference,

PageParameters params) (resource entities will be introduced in chapter 13).

The methods above have also a corresponding version that returns an instance of
org.apache.wicket.request.Url instead of a CharSequence. This version has the prefix 'map'
in its name (i.e. it has mapUrlFor as full name).

7.3.3 Method setResponsePage

Class RequestCycle contains the implementation of method setResponsePage we use to redirect
user to a specific page (see paragraph 2.4). The namesake method of class org.apache.wicket.
Component is just a convenience method that internally invokes the actual implementation on current
request cycle:

public final void setResponsePage(final Page page)

{

getRequestCycle().setResponsePage(page);

}

7.3.4 RequestCycle's hook methods and listeners

RequestCycle comes with some hook methods which can be overridden to perform custom actions
when request handling reaches a specific stage. These methods are:

• onBeginRequest(): called when RequestCycle is about to start handling the request.
• onEndRequest(): called when RequestCycle has finished to handle the request
• onDetach(): called after request handling has completed and RequestCycle is about to be

detached from its thread. The default implementation of this method invokes detach() on
current session (Session class will be shortly discussed in paragraph 7.4).

Methods onBeforeRequest and onEndRequest can be used if we need to execute custom actions
before and after business code is executed, such as opening a Hibernate/JPA session and closing it
when code has terminated.

A more flexible way to interact with request processing is to use the listener interface
org.apache.wicket.request.cycle.IRequestCycleListener. In addition to the three
methods already seen for RequestCycle, this interface offers some further hooks into request
processing:

• onBeginRequest(RequestCycle cycle): (see the description above)
• onEndRequest(RequestCycle cycle): (see the description above)
• onDetach(RequestCycle cycle): (see the description above)
• onRequestHandlerResolved(RequestCycle cycle, IRequestHandler handler): called when

an IRequestHandler has been resolved.
• onRequestHandlerScheduled(RequestCycle cycle, IRequestHandler handler): called when

Wicket free user guide 48

7 Under the hood of request processing

an IRequestHandler has been scheduled for execution.
• onRequestHandlerExecuted(RequestCycle cycle, IRequestHandler handler): called when

an IRequestHandler has been executed.
• onException(RequestCycle cycle, Exception ex): called when an exception has been thrown

during request processing.
• onExceptionRequestHandlerResolved(RequestCycle rc, IRequestHandler rh, Exception

ex): called when an IRequestHandler has been resolved and will be used to handle an
exception.

• onUrlMapped(RequestCycle cycle, IRequestHandler handler, Url url): called when an URL
has been generated for an IRequestHandler object.

To use request cycle listeners we must add them to our application which in turn will pass them to the
new RequestCycle's instances created by createRequestCycle:

@Override

public void init(){

super.init();

IRequestCycleListener myListener;

//listener initialization...

getRequestCycleListeners().add(myListener)

}

Method getRequestCycleListeners returns an instance of class org.apache.wicket.
request.cycle.RequestCycleListenerCollection. This class is a sort of typed collection for
IRequestCycleListener and it also implements the Composite pattern18.

7.4 Class Session
In Wicket we use class org.apache.wicket.Session to handle session-relative informations such

as client informations, session attributes, session-level cache (seen in paragraph 6.2.4), etc...
In addition, we know from paragraph 6.1 that Wicket creates a user session to store versions of stateful

pages. Similarly to what happens with RequestCycle, the new Session's instances are generated by
Application class with method newSession(Request request, Response response). This
method is not declared as final, hence it can be overridden if we need to use a custom
implementation of class Session.

By default if our custom application class is a subclass of WebApplication, newSession will return
an instance of class org.apache.wicket.protocol.http.WebSession.

As we have already mentioned talking about RequestCycle, also class Session provides a static
get() method which returns the session associated to the current thread.

7.4.1 Session and listeners

Just like RequestCycle also class org.apache.wicket.Session offers support for listener
entities. With Session these entities must implement the callback interface org.apache.wicket.
ISessionListener which exposes only method onCreated(Session session). As you might
guess from its name, this method is called when a new session is created. Session listeners must be
added to our application using a typed collection, just like we have done before with request cycle
listeners:

@Override

18 http://en.wikipedia.org/wiki/Composite_pattern

Wicket free user guide 49

http://en.wikipedia.org/wiki/Composite_pattern

7 Under the hood of request processing

public void init(){

super.init();

 //listener initialization...

ISessionListener myListener;

//add a custom session listener

getSessionListeners().add(myListener)

}

7.4.2 Handling session attributes

Class Session handles session attributes in much the same way as the standard interface
javax.servlet.http.HttpSession. The following methods are provided to create, read and
remove session attributes:

• setAttribute(String name, Serializable value): creates an attribute identified by
the given name. If session already contains an attribute with the same name, the new value will
replace the existing one. The value must be a serializable object.

• getAttribute(String name): returns the value of the attribute identified by the given
name, or null if the name does not correspond to any attribute.

• removeAttribute(String name): removes the attribute identified by the given name.

By default class WebSession will use the underlying http session to store attributes. Wicket will
automatically add a prefix to the name of the attributes. This prefix is returned by WebApplication's
method getSessionAttributePrefix().

7.4.3 Accessing to http session

If for any reason we need to directly access to the underlying HttpSession object, we can retrieve it
from the current request with the following code:

HttpSession session = ((ServletWebRequest)RequestCycle.get().getRequest())

 .getContainerRequest().getSession();

Using the raw session object can be necessary if we have to set a session attribute with a particular
name without the prefix added by Wicket. Let's say for example that we are working with Tomcat as web
server. One of the administrative tools provided by Tomcat is a page listing all the active user sessions
of a given web application:

Wicket free user guide 50

Illustration 7.1: Tomcat Sessions Administration page with custom values.

7 Under the hood of request processing

Tomcat allows us to set the values that will be displayed in columns “Guessed locale” and “Guessed
User name”. One possible way to do this is to use session attributes named “Locale” and “userName”
but we can't create them using Wicket Session class because they wouldn't have exactly the name
required by Tomcat. Instead, we must use the raw HttpSession and set our attributes on it:

HttpSession session = ((ServletWebRequest)RequestCycle.get().getRequest())

 .getContainerRequest().getSession();

session.setAttribute("Locale", "ENGLISH");

session.setAttribute("userName", "Mr BadGuy");

7.4.4 Temporary and permanent sessions

Wicket doesn't need to store data into user session as long as user visits only stateless pages.
Nonetheless, even under these conditions, a temporary session object is created to process each
request but it is discarded at the end of the current request. To know if the current session is temporary,
we can use method isTemporary():

Session.get().isTemporary();

If a session is not temporary (i.e. it is permanent), it's identified by an unique id which can be read
calling method getId(). This value will be null if session is temporary.

Although Wicket is able to automatically recognize when it needs to replace a temporary session with a
permanent one, sometimes we may need to manually control this process to make our initially
temporary session permanent.

To illustrate this possible scenario let's consider project BindSessionExample where we have a
stateless home page which sets a session attribute inside its constructor and then it redirects user to
another page which displays with a label the session attribute previously created. The code of the two
pages is the following:

Home page:

public class HomePage extends WebPage {

 public HomePage(final PageParameters parameters) {

 Session.get().setAttribute("username", "tommy");

Session.get().bind();

setResponsePage(DisplaySessionParameter.class);

 }

}

Target page:

public class DisplaySessionParameter extends WebPage {

public DisplaySessionParameter() {

 super();

 add(new Label("username", (String) Session.get().getAttribute("username")));

}

}

Again, we kept page logic very simple to not over-bloat the example with unnecessary code. In the
snippet above we have also bolded Session's method bind()which converts temporary session into a

Wicket free user guide 51

7 Under the hood of request processing

permanent one. If home page hadn't invoked this method, the session with its attribute would have been
discarded at the end of the request and page DisplaySessionParameter would have displayed an
empty value in its label.

7.4.5 Discarding session data

Once a user has finished doing her work inside our application, she must be able to log out and clean
her session data. To be sure that a permanent session will be discarded at the end of the current
request, class Session provides method invalidate(). If we want to immediately invalidate a given
session without waiting for the current request to complete, we can use method invalidateNow().

Warning

Remember that invalidateNow() will immediately remove also any instance
of components (and pages) from session, meaning that once we have called this
method we won't be able to work with them for the rest of request processing.

7.5 Storing arbitrary objects with metadata
JavaServer Pages Specification19 defines 4 scopes in which a page can create and access a variable.

These scopes are:
• request: variables declared in this scope can be seen only by pages processing the same

request. The lifespan of these variables is (at most) equal to the one of the related request.
They are discarded when the full response has been generated or when the request is
forwarded somewhere else.

• page: variables declared this scope can be seen only by the page that has created them.
• session: variables in session scope can be created and accessed by every page used in the

same session where they are defined.
• application: this is the widest scope. Variables defined in this scope can be used by any page

of a given web application.

Although Wicket doesn't implement the JSP Specification (it is rather an alternative to it), it offers a
feature called metadata which resembles scoped variables but is much more powerful. Metadata is quite
similar to a Java Map in that it stores pairs of key-value objects where the key must be unique. In Wicket
each of the following classes has its own metadata store: RequestCycle, Session, Application
and Component.

The key used for metadata is an instance of class org.apache.wicket.MetaDataKey<T>. To put
an arbitrary object into metadata we must use method setMetaData which takes two parameters in
input: the key to use to store data and the data object.

If we are using metadata with classes Session or Component, data object must be serializable
because Wicket serializes both session and component instances. This constraint is not applied to
metadata of classes Application and RequestCycle which can contain a generic object. In any
case, the type of data object must be compatible with the type parameter T specified by the key.

To retrieve a previously inserted object we must use method getMetaData(MetaDataKey<T>
key). In the following example we set a java.sql.Connection object into application's metadata so
it can be used by any page of the application:

Application class code:

public static MetaDataApp extends WebApplication{

//Do some stuff...

19 Paragraph 1.8.2 'Objects and Scopes' of JavaServer Pages 2.1 Specification

Wicket free user guide 52

7 Under the hood of request processing

/**

* Metadata key definition

*/

public static MetaDataKey<Conncetion> connectionKey = new
MetaDataKey<Conncetion>(){};

/**

* Application's initialization

*/

@Override

public void init(){

super.init();

Connection connection;

//connection initialization...

setMetaData(connectionKey, connection);

//Do some other stuff..

}

}

Code to get the object from metadata:

Connection connection = Application.get().getMetaData(MetaDataApp.connectionKey);

Since class MetaDataKey<T> is declared as abstract, we must implement it with a subclass or with
an anonymous class (like we did in the example above).

7.6 Summary
In this chapter we had a look at how Wicket internally handles a web request. Even if most of the time

we won't need to customize this internal process, knowing how it works is essential to use the
framework at 100%.

Entities like Application and Session will come in handy again when we will tackle the topic of
security in chapter 19.

Wicket free user guide 53

8 Wicket Links and URL generation

8 Wicket Links and URL
generation

Up to now we used component Link to move from a page to another and we have seen that it is quiet
similar to a “click” event handler (see paragraph 2.4).

However this component alone is not enough to build all possible kinds of links we may need in our
pages. Therefore, Wicket offers other link components suited for those tasks which can not be
accomplished with Link.

Besides learning new link components, in this chapter we will also see how to customize the page URL
generated by Wicket using the encoding facility provided by the framework and the page parameters
that can be passed to a target page.

8.1 PageParameters
A common practice in web development is to pass data to a page using query string parameters (like ?

paramName1=paramValu1¶mName2=paramValue2...). Wicket offers a more flexible and object

oriented way to do this with models (we will see them in the next chapter). However, even if we are
using Wicket, we still need to use query string parameters to exchange data with other Internet-based
services. Consider for example a classic confirmation page which is linked inside an email to let users
confirm important actions like password changing or the subscription to a mailing list. This kind of page
usually expects to receive a query string parameter containing the id of the action to confirm.

Query string parameters can also be referred to as named parameters. In Wicket they are handled with
class org.apache.wicket.request.mapper.parameter.PageParameters. Since named
parameters are basically name-value pairs, PageParameters works in much the same way as Java
Map providing two methods to create/modify a parameter (add(String name, Object value) and
set(String name, Object value)), one method to remove an existing parameter
(remove(String name)) and one to retrieve the value of a given parameter (get(String name)) .
Here is a snippet to illustrate the usage of PageParameters:

PageParameters pageParameters = new PageParameters();

//add a couple of parameters

pageParameters.add("name", "John");

pageParameters.add("age", 28);

//retrieve the value of 'age' parameter

pageParameters.get("age");

Now that we have seen how to work with page parameters, let's see how to use them with our pages.

8.1.1 PageParameters and bookmarkable pages

Base class Page comes with a constructor which takes in input a PageParameters instance. If we
use this superclass constructor in our page, PageParameters will be used to build page URL and it
can be retrieved at a later time with Page's method getPageParameters().

In the following example taken from project PageParametersExample we have a home page with a link
to a second page that uses a version of method setResponsePage that takes in input also a
PageParameters to build the target page (named PageWithParameters). The code for the link and
for the target page is the following:

Wicket free user guide 54

8 Wicket Links and URL generation

Link code:

add(new Link("pageWithIndexParam") {

@Override

public void onClick() {

PageParameters pageParameters = new PageParameters();

pageParameters.add("foo", "foo");

pageParameters.add("bor", "bar");

setResponsePage(PageWithParameters.class, pageParameters);

}

});

Target page code:

 public class PageWithParameters extends WebPage {

//Override superclass constructor

public PageWithParameters(PageParameters parameters) {

super(parameters);

}

 }

The code is quite straightforward and it’s more interesting to look at the URL generated for the target
page:

<app root>/PageParametersExample/wicket/bookmarkable/org.wicketTutorial.PageWithParameters

 ?foo=foo&bor=bar

At first glance the URL above could seem a little weird, except for the last part which contains the two
named parameters used to build the target page.

The reason for this “strange” URL is that, as we know from paragraph 6.2.5, when a page is
instantiated using a constructor with no argument or using a constructor that accepts only a
PageParameters, Wicket will try to generate a static URL for it, with no session-relative informations.
This kind of URL is called bookmarkable because it can be saved by users as a bookmark and
accessed at a later time.

A bookmarkable URL is composed by a fixed prefix (which by default is bookmarkable) and the
qualified name of page class (org.wicketTutorial.PageWithParameters in our example).
Segment wicket is another fixed prefix added by default during URL generation. In paragraph 8.6.4 we
will see how to customize fixed prefixes with a custom implementation of interface IMapperContext.

8.1.2 Indexed parameters

Besides named parameters, Wicket supports also indexed parameters. These kinds of parameters are
rendered as URL segments placed before named parameters. Let's consider for example the following
URL:

<application path>/foo/bar?1&baz=baz

The URL above contains two indexed parameters (foo and bar) and a query string consisting of the
page id and a named parameter (baz). Just like named parameters also indexed parameters are

Wicket free user guide 55

8 Wicket Links and URL generation

handled with class PageParameters. The methods provided by PageParameters for indexed
parameters are set(int index, Object object) (to add/modify a parameter), remove(int
index)(to remove a parameter) and get(int index) (to read a parameter).

As their name suggests, indexed parameters are identified by a numeric index and they are rendered
following the order in which they have been added to PageParameters. The following is an example of
usage of indexed parameters:

PageParameters pageParameters = new PageParameters();

//add a couple of parameters

pageParameters.set(0, "foo");

pageParameters.set(1, "bar");

//retrieve the value of the second parameter ("bar")

pageParameters.get(1);

Project PageParametersExample comes also with a link to a page with both indexed parameters and a
named parameter:

add(new Link("pageWithNamedIndexParam") {

@Override

public void onClick() {

PageParameters pageParameters = new PageParameters();

pageParameters.set(0, "foo");

pageParameters.set(1, "bar");

pageParameters.add("baz", "baz");

setResponsePage(PageWithParameters.class, pageParameters);

}

});

The URL generated for the linked page (PageWithParameters) is the one seen at the beginning of
the paragraph.

8.2 Bookmarkable links
A link to a bookmarkable page can be built with link component org.apache.wicket.markup.html
.link.BookmarkablePageLink:

BookmarkablePageLink bpl=new BookmarkablePageLink(PageWithParameters.class, pageParameters);

The specific purpose of this component is to move user to a bookmarkable page, hence we don't have
to implement any abstract method like we do with Link component.

8.3 Automatically creating bookmarkable links with tag
<wicket:link>

Bookmarkable pages can be linked directly inside markup files without writing any Java code. Using
tag <wicket:link> we ask Wicket to automatically add bookmarkable links for the anchors wrapped
inside this tag. Here is an example of usage of tag <wicket:link> taken from the home page of project
BookmarkablePageAutoLink:

Wicket free user guide 56

8 Wicket Links and URL generation

<!DOCTYPE html>

<html xmlns:wicket="http://wicket.apache.org">

<head>

<meta charset="utf-8" />

<title>Apache Wicket Quickstart</title>

</head>

<body>

 <div id="bd">

 <wicket:link>

HomePage

SubPackagePage

 </wicket:link>

 </div>

</body>

</html>

The key part of the markup above is the href attribute which must contain the package-relative path to
a page. The home page is inside package org.wicketTutorial which in turns contains the sub
package anotherPackage. This package hierarchy is reflected into href attributes: in the first anchor
we have a link to the home page itself while the second anchor points to page SubPackagePage which
is placed into sub package anotherPackage. Absolute paths are supported as well and we can use
them if we want to specify the full package of a given page. For example the link to SubPackagePage
could have been written also in the following (more verbose) way :

SubPackagePage

If we take a look also at the markup of SubPackagePage we can see that it contains a link to the
home page which uses the parent directory selector (two dots):

<!DOCTYPE html>

<html xmlns:wicket="http://wicket.apache.org">

<head>

<meta charset="utf-8" />

<title>Apache Wicket Quickstart</title>

</head>

<body>

<div id="bd">

<wicket:link>

HomePage

SubPackagePage

</wicket:link>

</div>

</body>

</html>

Please note that any link to the current page (aka self link) is disabled. For example in the home page
the self link is rendered like this:

HomePage</span

Wicket free user guide 57

8 Wicket Links and URL generation

The markup used to render disabled links can be customized using the markup settings (interface
IMarkupSettings) available inside application class:

@Override

public void init()

{

super.init();

//wrap disabled links with tag

getMarkupSettings().setDefaultBeforeDisabledLink("");

getMarkupSettings().setDefaultAfterDisabledLink("");

}

The purpose of tag <wicket:link> is not limited to just ease the usage of bookmarkable pages. As we
we will see in chapter 13, this tag can be also adopted to manage web resources like pictures, CSS
files, JavaScript files and so on.

8.4 External links
Since Wicket uses plain HTML markup files as templates, we can place an anchor to an external page

directly into markup file. But when we need to dynamically generate external anchors, we can use link
component org.apache.wicket.markup.html.link.ExternalLink. In order to build an external
link we must specify the value of attribute href using a model or a plain string. In the next snippet, given
an instance of Person, we generate a Google search query for its full name:

Html:

 <a wicket:id="externalSite">Search me on Google!

Java code:

 Person person = new Person("John", "Smith");

 String fullName = person.getFullName();

 //Space characters must be replaced by character '+'

 String googleQuery = "http://www.google.com/search?q=" + fullName.replace(" ", "+");

 add(new ExternalLink("externalSite", googleQuery));

Generated anchor:

 Search me on Google!

If we need to specify also a dynamic value for the text inside the anchor, we can pass it as additional
constructor parameter:

Html:

 <a wicket:id="externalSite">Label goes here...

Java code:

 Person person = new Person("John", "Smith");

 String fullName = person.getFullName();

 String googleQuery = "http://www.google.com/search?q=" + fullName.replace(" ", "+");

 String linkLabel = "Search '" + fullName + "' on Google.";

 add(new ExternalLink("externalSite", googleQuery, linkLabel));

Wicket free user guide 58

8 Wicket Links and URL generation

Generated anchor:

 Search 'John Smith' on Google.

8.5 Stateless links
Component Link has a stateful nature, hence it cannot be used with stateless pages. To use links with

these kinds of pages Wicket provides the convenience component org.apache.wicket.markup
.html.link.StatelessLink which is basically a subtype of Link with the stateless hint set to true.

Please keep in mind that Wicket generates a new instance of a stateless page also to serve stateless
links, so the code inside method onClick() can not depend on instance variables. To illustrate this
potential issue let's consider the following code (from project StatelessPage) where the value of the
variable index is used inside onclick():

public class StatelessPage extends WebPage {

private int index = 0;

public StatelessPage(PageParameters parameters) {

super(parameters);

}

@Override

protected void onInitialize() {

super.onInitialize();

setStatelessHint(true);

add(new StatelessLink("statelessLink") {

@Override

public void onClick() {

//It will always print zero

System.out.println(index++);

}

});

}

}

The printed value will always be zero because a new instance of the page is used every time user
clicks on link statelessLink.

8.6 Generating structured and clear URLs
Having structured URLs in our site is a basic requirement if we want to build an efficient SEO20

strategy, but it also contributes to improve user experience with more intuitive URLs. Wicket provides
two different ways to control URL generation. The first (and simplest) is to “mount” one or more pages to
an arbitrary path, while a more powerful technique is to use custom implementations of interfaces
IMapperContext and IPageParametersEncoder. In the next paragraphs we will learn both these
two techniques.

8.6.1 Mounting a single page

20 http://en.wikipedia.org/wiki/Search_engine_optimization

Wicket free user guide 59

8 Wicket Links and URL generation

With Wicket we can mount a page to a given path in much the same way as we map a servlet filer to a
desired path inside file web.xml (see page 9). Using method mountPage(String path,
Class<T> pageClass) of class WepApplication we tell Wicket to respond with a new instance of
pageClass whenever a user navigates to the given path. In the application class of project
MountedPagesExample we mount page MountedPage to path "/pageMount":

@Override

public void init()

{

super.init();

mountPage("/pageMount", MountedPage.class);

//Other initialization code...

}

The path provided to mountPage will be also used to generate the URL for any page of the specified
class:

//it will return "/pageMount"

RequestCycle.get().urlFor(MountedPage.class);

Under the hood mountPage mounts an instance of request mapper org.apache.wicket.request
.mapper.MountedMapper configured for the given path:

public final <T extends Page> void mountPage(final String path,final Class<T> pageClass)

{

mount(new MountedMapper(path, pageClass));

}

Request mappers and Application's method mount have been introduced in the previous chapter
(paragraph 7.3.1).

8.6.2 Using parameter placeholders with mounted pages

The path specified for mounted pages can contain dynamic segments which are populated with the
values of the named parameters used to build the page. These segments are declared using special
segments called parameter placeholders. Consider the path used in the following example:

mountPage("/pageMount/${foo}/otherSegm", MountedPageWithPlaceholder.class);

The path used above is composed by three segments: the first and the last are fixed while the second

will be replaced by the value of named parameter foo that must be provided when page
MountedPageWithPlaceholder is instantiated:

Java code:

 PageParameters pageParameters = new PageParameters();

 pageParameters.add("foo", "foo");

 setResponsePage(MountedPageWithPlaceholder.class, pageParameters);

Wicket free user guide 60

8 Wicket Links and URL generation

Generated URL:

 <Application path>/pageMount/foo/otherSegm

On the contrary if we manually insert an URL like '<web app path>/pageMount/bar/otherSegm', we can
read value 'bar' retrieving the named parameter foo inside our page.

Place holders can be declared as optional using character '#' in place of '$':

 mountPage("/pageMount/#{foo}/otherSegm", MountedPageOptionalPlaceholder.class);

If the named parameter for an optional placeholder is missing, the corresponding segment is removed
from the final URL:

Java code:

PageParameters pageParameters = new PageParameters();

setResponsePage(MountedPageWithPlaceholder.class, pageParameters);

Generated URL:

<Application path>/pageMount/otherSegm

8.6.3 Mounting a package

In addition to mounting a single page, Wicket offers also the possibility of mounting all the pages inside
a package to a given path. Method mountPackage(String path, Class<T> pageClass) of class
WepApplication will mount every page inside pageClass's package to the specified path.

The resulting URL for package-mounted pages will have the following structure:

<Application path>/mountedPath/<PageClassName>[optional query string]

For example in project MountedPagesExample we have mounted all pages inside package
org.tutorialWicket.subPackage with this instruction:

mountPackage("/mountPackage", StatefulPackageMount.class);

StatefulPackageMount is one of the pages placed into the desired package and its URL will be:

<Application path>/mountPackage/StatefulPackageMount?1

Similarly to what is done by mountPage, the implementation of method mountPackage mounts an
instance of org.apache.wicket.request.mapper.PackageMapper to the given path.

8.6.4 Providing custom mapper context to request mappers

Interface org.apache.wicket.request.mapper.IMapperContext is used by request mappers
to create new page instances and to retrieve static URL segments used to build and parse page URLs.
Here is the list of these segments:

• Namespace: it's the first URL segment of not-mounted pages. By default its value is wicket.
• Identifier for non bookmarkable URLs: it's the segment that identifies non bookmarkable pages.

By default its value is page.

Wicket free user guide 61

8 Wicket Links and URL generation

• Identifier for bookmarkable URLs: it's the segment that identifies bookmarkable pages. By
default its value is bookmarkable (as we have seen before in paragraph 8.1.1).

• Identifier for resources: it's the segment that identifies Wicket resources. Its default value is
resources. The topic of resource management will be covered in chapter 13.

IMapperContext provides a getter method for any segment listed above. By default Wicket uses
class org.apache.wicket.DefaultMapperContext as mapper context.

Project CustomMapperContext is an example of customization of mapper context where we use index
as identifier for non-bookmarkable pages and staticURL as identifier for bookmarkable pages. In this
project, instead of implementing our mapper context from scratch, we used DefaultMapperContext
as base class overriding just the two methods we need to achieve the desired result
(getBookmarkableIdentifier() and getPageIdentifier()). The final implementation is the
following:

public class CustomMapperContext extends DefaultMapperContext{

@Override

public String getBookmarkableIdentifier() {

return "staticURL";

}

@Override

public String getPageIdentifier() {

return "index";

}

}

Now to use a custom mapper context in our application we must override Application's method
newMapperContext() and make it return our implementation of IMapperContext:

@Override

protected IMapperContext newMapperContext() {

return new CustomMapperContext();

}

8.6.5 Controlling how page parameters are encoded with IPageParametersEncoder

Some request mappers (like MountedMapper and PackageMapper) can delegate page parameters
encoding/decoding to interface org.apache.wicket.request.mapper.parameter.IPage
ParametersEncoder.

This entity exposes two methods: encodePageParameters and decodePageParameters: the first
one is invoked to encode page parameters into an URL while the second one extracts parameters from
URL.

Wicket comes with a built-in implementation of this interface which encodes named page parameters
as URL segments using the following patter: /paramName1/paramValue1/paramName2/param
Value2...

This built-in encoder is class org.apache.wicket.request.mapper.parameter.UrlPathPage
ParametersEncoder. In project PageParametersEncoderExample we have manually mounted a
MountedMapper that takes in input also an UrlPathPageParametersEncoder:

@Override

public void init()

{

Wicket free user guide 62

8 Wicket Links and URL generation

super.init();

mount(new MountedMapper("/mountedPath", MountedPage.class, new

 UrlPathPageParametersEncoder()));

}

The home page of the project contains just a link to page MountedPage. The code of the link and the
resulting page URL are the following:

Link code:

add(new Link("mountedPage") {

@Override

public void onClick() {

PageParameters pageParameters = new PageParameters();

pageParameters.add("foo", "foo");

pageParameters.add("bar", "bar");

setResponsePage(MountedPage.class, pageParameters);

}

});

Generated URL:

 <Application path>/mountedPath/foo/foo/bar/bar?1

8.6.6 Encrypting page URLs

Sometimes URLs are a double–edged sword for our site because they can expose too many details
about the internal structure of our web application and malicious users could exploit them to perform a
cross-site request forgery21.

To avoid this kind of security threat we can use request mapper CryptoMapper which wraps an
existing mapper and encrypts the original URL producing a single encrypted segment:

Typically, CryptoMapper is registered into a Wicket application as the root request mapper wrapping
the default one:

@Override

public void init()

{

 super.init();

 setRootRequestMapper(new CryptoMapper(getRootRequestMapper(), this));

 //pages and resources must be mounted after we have set CryptoMapper

 mountPage("/foo/", HomePage.class);

}

21 http://en.wikipedia.org/wiki/Cross-site_request_forgery

Wicket free user guide 63

Illustration 8.1: An URL with the encrypted
segment

http://en.wikipedia.org/wiki/Cross-site_request_forgery

8 Wicket Links and URL generation

As pointed out in the code above, pages and resources must be mounted after having set
CryptoMapper as root mapper, otherwise the mounted paths will not work.

8.7 Summary
Links and URLs are not trivial topics as they may seem and in Wicket they are strictly interconnected.

Developers must choose the right trade-off between producing structured URLs and avoiding to make
them verbose and vulnerable.

In this chapter we have explored the tools provided by Wicket to control how URLs are generated. We
have started with static URLs for bookmarkable pages and we have seen how to pass parameters to
target pages with class PageParameters. In the second part of the chapter we have focused on
mounting pages to a specific path and on controlling how parameters are encoded by Wicket. Finally,
we have also seen how to encrypt URLs to prevent security vulnerabilities.

Wicket free user guide 64

9 Wicket models and forms

9 Wicket models and forms

In Wicket the concept of “model”22 is probably the most important topic of the entire framework and it is
strictly related to the usage of its components. In addition, models are also an important element for
internationalization, as we will see in paragraph 12.6.

However, despite their fundamental role in Wicket, models are not difficult to understand but the best
way to learn how they work is to use them with Wicket forms.

That's why we haven't talked about models so far, and why this chapter discusses these two topics
together.

9.1 What is a model?
Model is essentially a facade23 interface which allows components to access and modify their data

without knowing any detail about how they are managed or persisted. Every component has at most one
related model, while a model can be shared among different components. In Wicket a model is any
implementation of the interface org.apache.wicket.model.IModel:

The IModel interface defines just the methods needed to get and set a data object (getObject()
and setObject()), decoupling components from concrete details about the persistence strategy
adopted for data. In addition, the level of indirection introduced by models allows to access data object
only when it is really needed (for example during rendering phase) and not earlier when it may not be
ready to be used.

 Any component can get/set its model as well as its data object using the 4 public shortcut methods
listed in the class diagram above.

The two methods onModelChanged() and onModelChanging() are triggered by Wicket each time
a model is modified: the first one is called after model has been changed, the second one just before the
change occurs.

In the examples seen so far we have worked with Label component using its constructor which takes
in input two string parameters, the component id and the text to display:

add(new Label("helloMessage", "Hello WicketWorld!"));

This constructor internally builds a model which wraps the second string parameter. That's why we
didn't noticed label model in the previous examples. Here is the code of this constructor:

public Label(final String id, String label)

22 Wicket models have nothing to do with the model we talked about in paragraph 1.2!!
23 For an introduction to Facade pattern see http://en.wikipedia.org/wiki/Facade_pattern

Wicket free user guide 65

Illustration 9.1: UML class diagram of Component and IModel

http://en.wikipedia.org/wiki/Facade_pattern

9 Wicket models and forms

{

this(id, new Model<String>(label));

}

Class org.apache.wicket.model.Model is a basic implementation of IModel. It can wrap any
object that implements the interface java.io.Serializable. The reason of this constraint over data
object is that this model is stored into web session, and we know from chapter 6 that data are stored into
session using serialization.

 Note

In general, Wicket models support a detaching capability that allows to work
also with non-serializable objects as data model. We will see detaching
mechanism later in this chapter.

Just like any other Wicket components, Label provides also a constructor that takes in input the
component id and the model to use with the component. Using this constructor the previous example
becomes:

add(new Label("helloMessage", new Model<String>("Hello WicketWorld!")));

 Note

Class Model comes with a bunch of factory methods that makes easier building

new model instances. For example method of(T object) creates a new

instance of Model which wraps object parameter inside it.

So instead of writing

new Model<String>("Hello WicketWorld!")

we can write
Model.of("Hello WicketWorld!")

If the data object is a List, a Map or a Set we can use similar methods called
ofList, ofMap and ofSet.
From now on we will use this factory methods in our examples.

It's quite clear that if our Label must display a static text it doesn't make much sense building a model
by hand like we did in the last code example.

However is not unusual to have a Label that must display a dynamic value, like the input inserted by a
user or a value read from database. Wicket models are designed to solve these kind of problems.

Let's say we need a label to display the current time stamp each time a page is rendered. We can
implement a custom model which returns a new Date instance when method getObject() is called:

IModel timeStampModel = new Model<String>(){

@Override

public String getObject() {

return new Date().toString();

}

};

Wicket free user guide 66

9 Wicket models and forms

add(new Label("timeStamp", timeStampModel));

Even if sometimes writing a custom model could be a good choice to solve a specific problem, Wicket
already provides a set of IModel implementations which should fit most of our needs. In the next
paragraph we will see a couple of models that allow us to easily integrate JavaBeans with our web
applications and in particular with our forms.

 Note

By default class Component escapes HTML sensitive characters (like '<', '>' or

'&') from the textual representation of its model object. The term 'escape' means

that these characters will be replaced with their corresponding HTML entity24 (for

example '<' becomes '< ').

This is done for security reasons as a malicious user could attempt to inject

markup or JavaScript into our pages.

If we want to display the raw content stored inside model, we can tell Component

to not escape characters calling method setEscapeModelStrings(false).

9.2 Models and JavaBeans
One of the main goals of Wicket is to use JavaBeans and POJO as data model, overcoming the

impedance mismatch between web technologies and OO paradigm. In order to make this task as easy
as possible, Wicket offers two special model classes: org.apache.wicket.model.PropertyModel
and org.apache.wicket.model.CompoundPropertyModel. We will see how to use them in the
next two examples, using the following JavaBean as data object:

public class Person implements Serializable{

private String name;

private String surname;

private String address;

private String email;

private String passportCode;

private Person spouse;

private List<Person> children;

public Person(String name, String surname) {

this.name = name;

this.surname = surname;

}

public String getFullName(){

 return name + " " + surname;

}

/*

 Getters and setters for private fields

 ...

 */

}

24 http://en.wikipedia.org/wiki/Character_entity_reference

Wicket free user guide 67

http://en.wikipedia.org/wiki/Character_entity_reference

9 Wicket models and forms

9.2.1 PropertyModel

Let's say we want to display the name field of a Person instance with a label. We could, of course, use
Model class like we did in the previous example, obtaining something like this:

Person person = new Person();

//load person's data...

Label label = new Label("name", new Model(person.getName()));

However this solution has a huge drawback: the text displayed by the label will be static and if we
change the value of the field, the label won't update its content. Instead, to display always the current
value of a class field, we should use model class org.apache.wicket.model.PropertyModel:

Person person = new Person();

//load person's data...

Label label = new Label("name", new PropertyModel(person, "name"));

PropertyModel has just one constructor with two parameters: the model object (person in our
example) and the name of the property we want to read/write ("name" in our example). This last
parameter is called property expression.

Internally, methods getObject/setObject use property expression to get/set property's value. To resolve
class properties PropertyModel uses class org.apache.wicket.util.lang.Property
Resolver which can access any kind of property, private fields included.

Just like Java language, property expressions support dotted notation to select sub properties. So if we
want to display the name of Person's spouse we can write:

Label label = new Label("spouseName", new PropertyModel(person, "spouse.name"));

Note

PropertyModel is null-safe, which means we don't have to worry if property
expression includes a null value in its path. If such a value is encountered, an
empty string will be returned.

If property is an array or a List, we can specify an index after its name. For example, to display the

name of the first child of a Person we can write the following property expression:

Label label = new Label("firstChildName", new PropertyModel(person, "children.0.name"));

Indexes and map keyes can be also specified using squared brackets like “children[0].name” or
“mapField[key].subfield”.

9.2.2 CompoundPropertyModel and model inheritance

Class org.apache.wicket.model.CompoundPropertyModel is a particular kind of model which
is usually used along with another feature of Wicket called model inheritance.

With this feature, when a component needs to use a model but no one has been assigned to it, it will
search through the whole container hierarchy for a parent with an inheritable model. Inheritable models
are those which implement interface org.apache.wicket.model.IComponentInheritedModel

Wicket free user guide 68

9 Wicket models and forms

and CompoundPropertyModel is one of them.
Once a CompoundPropertyModel has been inherited by a component, it will behave just like a
PropertyModel using the id of the component as property expression. As a consequence, to make the
most of CompoundPropertyModel we must assign it to one of the container of a given component,
rather than directly to the component itself.

For example if we use CompoundPropertyModel with the previous example (display spouse's
name), the code would become like this:

//set CompoundPropertyModel as model for the container of the label

setDefaultModel(new CompoundPropertyModel(person));

Label label = new Label("spouse.name");

add(label);

Note that now the id of the label is equal to the property expression previously used with
PropertyModel. Now as further example let's say we want to extend the code above displaying also
all the main informations of a person (name, surname, address and email). All we have to do is to add
one label for every additional information using the relative property expression as component id:

//Create a person named 'John Smith'

Person person = new Person("John", "Smith");

setDefaultModel(new CompoundPropertyModel(person));

add(new Label("name"));

add(new Label("surname"));

add(new Label("address"));

add(new Label("email"));

add(new Label("spouse.name"));

CompoundPropertyModel can save us a lot of boring coding if we choose the id of components

according to properties name. However it's also possible to use this type of model even if the id of a
component does not correspond to a valid property expression. Method bind(String property)
allows to create a property model from a given CompoundPropertyModel using the provided
parameter as property expression. For example if we want to display spouse's name in a label having
"xyz" as id, we can write the following code:

//Create a person named 'John Smith'

Person person = new Person("John", "Smith");

CompoundPropertyModel compoundModel;

setDefaultModel(compoundModel = new CompoundPropertyModel(person));

add(new Label("xyz", compoundModel.bind("spouse.name")));

CompoundPropertyModel are particularly useful when used in combination with Wicket forms, as we
will see in the next paragraph.

 Note

Model is referred to as static model because the result of its method
getObject is fixed an it is not dynamically evaluated each time the method is

Wicket free user guide 69

9 Wicket models and forms

called. In contrast, models like PropertyModel and CompoundProperty
Model are called dynamic.

9.3 Wicket forms
Web applications use HTML forms to collect user input and send it to the server. Wicket provides class
org.apache.wicket.markup.html.form.Form to handle web forms. This component must be
bound to tag <form>. The following snippet shows how to create a very basic Wicket form in a page:

Html:
<form wicket:id="form">

 <input type="submit" value="submit"/>

</form>

Java code:

Form form = new Form("form"){

 @Override

 protected void onSubmit() {

 System.out.println("Form submitted.");

 }

};

add(form);

Method onSubmit is called whenever a form has been submitted and it can be overridden to perform
custom actions. Please note that a Wicket form can be submitted using a standard HTML submit button
which is not mapped to any component (i.e. it hasn't a wicket:id attribute).

In the next chapter we will continue to explore Wicket forms and we will see how to submit forms using
special components which implement interface org.apache.wicket.markup.html.form.
IFormSubmitter.

9.3.1 Form and models

A form should contain some input fields (like text fields, check boxes, radio buttons, drop-dpwn lists,
text areas, etc...) to interact with users. Wicket provides an abstraction for all these kinds of elements
with component org.apache.wicket.markup.html.form.FormComponent:

The purpose of FormComponent is to store the corresponding user input into its model when form is

Wicket free user guide 70

Illustration 9.2: FormComponent and some of the most common input components.
All classes are under package org.apache.wicket.markup.html.form.

9 Wicket models and forms

submitted. Form is responsible for mapping input values to the corresponding component, avoiding us
the burden of manually synchronizing models with input fields and vice versa.

9.3.2 Login form

As first example of interaction between form and models, we will build a classic login form which asks
for username and password (project LoginForm).

Warning

The topic of security will be discussed later in chapter 19. The following form is
for example purposes only and is not suited for a real application.
If you need to use a login form you should consider to use component
org.apache.wicket.authroles.authentication.panel.SignInPanel

shipped with Wicket.

This form needs two text fields, one of which must be a password field. We should also use a label to
display the result of login process25. For the sake of simplicity, the login logic is all inside onSubmit and
is quite trivial.

The following is a possible implementation of our form:

public class LoginForm extends Form{

private TextField usernameField;

private PasswordTextField passwordField;

private Label loginStatus;

public LoginForm(String id) {

super(id);

usernameField = new TextField("username", Model.of(""));

passwordField = new PasswordTextField("password", Model.of(""));

loginStatus = new Label("loginStatus", Model.of(""));

add(usernameField);

add(passwordField);

add(loginStatus);

}

public final void onSubmit() {

String username = (String)usernameField.getDefaultModelObject();

String password = (String)passwordField.getDefaultModelObject();

if(username.equals("test") && password.equals("test"))

 loginStatus.setDefaultModelObject("Congratulations!");

else

 loginStatus.setDefaultModelObject("Wrong username or password!");

}

}

Inside form constructor we build the three components used in the form and we assign them a model
containing an empty string:

25 In chapter 10 we will see that Wicket offers a built-in mechanism to display feedback messages to user.

Wicket free user guide 71

9 Wicket models and forms

 usernameField = new TextField("username", Model.of(""));

passwordField = new PasswordTextField("password", Model.of(""));

loginStatus = new Label("loginStatus", Model.of(""));

 If we don't provide a model to a form component, we will get the following exception on form
submission:

java.lang.IllegalStateException: Attempt to set model object on null model of component:

Component TextField corresponds to the standard text field, without any particular behavior or
restriction on the allowed values. We must bind this component to tag <input> with attribute type
equals to "text".
PasswordTextField is a subtype of TextFiled and it must be used with an <input> tag with

attribute type equals to "password". For security reasons component PasswordTextField cleans its
value at each request, so it wil be always empty after form has been rendered.

By default PasswordTextField fields are required, meaning that if we left them empty, the form
won't be submitted (i.e. onSubmit won't be called).

Class FormComponent provides method setRequired(boolean required) to change this
behavior. 26

Inside onSubmit, to get/set model objects we have used shortcut methods
setDefaultModelObject and getDefaultModelObject. Both methods are defined in class
Component (see class diagram from Illustration 9.1). The following are the possible markup and code
for the login page:

Html:

<html>

<head>

 <title>Login page</title>

</head>

<body>

<form id="loginForm" method="get" wicket:id="loginForm">

 <fieldset>

 <legend style="color: #F90">Login</legend>

 <p wicket:id="loginStatus"></p>

 Username: <input wicket:id="username" type="text" id="username" />

 Password: <input wicket:id="password" type="password" id="password" />

 <p>

 <input type="submit" name="Login" value="Login"/>

 </p>

 </fieldset>

</form>

</body>

</html>

Java code:

public class HomePage extends WebPage {

 public HomePage(final PageParameters parameters) {

super(parameters);

26 Chapter 10 will cover form validation in detail.

Wicket free user guide 72

9 Wicket models and forms

 add(new LoginForm("loginForm"));

 }

}

The example shows how Wicket form components can be used to store user input inside their model.
However we can dramatically improve the form code using CompoundPropertyModel and its ability to
access the properties of its model object. The revisited code is the following (project LoginForm
Revisited):

public class LoginForm extends Form{

private String username;

private String password;

private String loginStatus;

public LoginForm(String id) {

super(id);

setDefaultModel(new CompoundPropertyModel(this));

add(new TextField("username"));

add(new PasswordTextField("password"));

add(new Label("loginStatus"));

}

public final void onSubmit() {

if(username.equals("test") && password.equals("test"))

loginStatus = "Congratulations!";

else

loginStatus = "Wrong username or password !";

}

}

In this version the form itself is used as model object for CompoundPropertyModel. This allows
children components to use directly form's fields as backing objects, without explicitly creating a model
for them.

Note

Keep in mind that when CompoundPropertyModel is inherited, it does not
consider the ids of traversed containers for the final property expression, but it
will always use just the id of the inheritor component.
To understand this potential pitfall, let's consider the following initialization code
of a page:

//Create a person named 'John Smith'

Person person = new Person("John", "Smith");

//Create a person named 'Jill Smith'

Person spouse = new Person("Jill", "Smith");

//Set Jill as John's spouse

person.setSpouse(spouse);

setDefaultModel(new CompoundPropertyModel(person));

Wicket free user guide 73

9 Wicket models and forms

WebMarkupContainer spouse = new WebMarkupContainer("spouse");

Label name;

spouse.add(name = new Label("name"));

add(spouse);

The value displayed by label "name" will be "John" and not the spouse's name
"Jill" as you may expect.
In this example the label doesn't own a model, so it must search up its container
hierarchy for an inheritable model. However, also its container (WebMarkup
Container with id 'spouse') doesn't own a model, hence the request for a model
is forwarded to the upper container, which is the page. Finally, label inherits
CompoundPropertyModel from page but only its own id is used for the
property expression.
The containers in between are never taken into account for the final property
expression.

9.4 Component DropDownChoice
Class org.apache.wicket.markup.html.form.DropDownChoice is the form component

needed to display a list of possible options as a drop-down list where users can select one of the
proposed options. This component must be used with tag <select>:

Html:

<form wicket:id="form">

Select a fruit: <select wicket:id="fruits"></select>

<div><input type="submit" value="submit"/></div>

</form>

Java code:

List<String> fruits = Arrays.asList("apple", "strawberry", "watermelon");

form.add(new DropDownChoice<String>("fruits", new Model(), fruits));

Screenshot of generated page:

In addition to the component id, in order to build a DropDownChoice we need to provide to its
constructor two further parameters:

• a model containing the current selected item. This parameter is not required if we are going to
inherit a CompundPropertyModel for this component.

Wicket free user guide 74

9 Wicket models and forms

• a list of options to display which can be supplied as a model or as a regular java.util.List.

In the example above the possible options are provided as a list of String objects. Now let's take a
look at the markup generated for them:

<select name="fruits" wicket:id="fruits">

<option value="" selected="selected">Choose One</option>

<option value="0">apple</option>

<option value="1">strawberry</option>

<option value="2">watermelon</option>

</select>

The first option is a placeholder item corresponding to a null model value. By default
DropDownChoice cannot have a null value so users are forced to select a not-null option. If we want
to change this behavior we can set the nullValid flag to true with method setNullValid. Please
note that the placeholder text (“Chose one”) can be localized, as we will see in chapter 12.

The other options are identified by the attribute value. By default the value of this attribute is the index
of the single option inside the provided list of choices, while the text displayed to user is obtained by
simply calling toString()on the choice object. This default behavior works fine as long as our options
are simple objects like strings, but when we move to more complex objects we may need to implement a
more sophisticated algorithm to generate the value to use as option id and the one to display to user.

Wicket has solved this problem introducing interface org.apache.wicket.markup.html.form.
IChoiceRender. This interface defines method getDisplayValue(T object) that is called to
generate the value to display for the given choice object, and method getIdValue(T object, int
index) that is called to generate the option id.

The built-in implementation of this interface is class org.apache.wicket.markup.html.Form.
ChoiceRenderer which renders the two values using property expressions.

In the following code we want to show a list of Person objects using their full name as value to display
and using their passport code as option id:

Java code:

 List<Person> persons;

//Initialize the list of persons here...

ChoiceRenderer personRenderer = new ChoiceRenderer("fullName", "passportCode");

form.add(new DropDownChoice<String>("persons", new Model<Person>(), persons, personRenderer));

The choice renderer can be assigned to DropDownChoice using one of its constructor that accepts
this type of parameter (like we did in the example above) or after its creation with method
setChoiceRenderer.

9.5 Model chaining
Models that implement the interface org.apache.wicket.model.IChainingModel can be used

to build a chain of models.
These kinds of models are able to recognize whether their model object is itself an implementation of
IModel and if so, they will call getObject on the wrapped model and the returned value will be the
actual model object. In this way we can combine the action of an arbitrary number of models, making
exactly a chain of models.

Chaining models allows to combine different data persistence strategies, similarly to what we do with

Wicket free user guide 75

9 Wicket models and forms

chains of I/O streams.27

To see model chaining in action we will build a page that implements the List/Detail View pattern,
where we have a drop-down list of Person objects and a form to display and edit the data of the current
selected Person.

The example page will look like this:

What we want to do in this example is to chain the model of the DropDownChoice (which contains the
selected Person) with the model of the Form. In this way the Form will work with the selected Person
as backing object.

Component DropDownChoice can be configured to automatically update its model each time we
change the selected item on client side. All we have to do is to override method wantOn
SelectionChangedNotifications to make it return true. In practice, when this method returns
true, DropDownChoice will submit its value every time JavaScript event onChange occurs, and its
model will be consequently updated. To leverage this functionality, DropDownChoice doesn't need to
be inside a form.

The following is the resulting markup of the example page:

...

<body>

List of persons <select wicket:id="persons"></select>

<form wicket:id="form">

<div style="display: table;">

<div style="display: table-row;">

<div style="display: table-cell;">Name: </div>

<div style="display: table-cell;">

<input type="text" wicket:id="name"/>

</div>

</div>

<div style="display: table-row;">

<div style="display: table-cell;">Surname: </div>

<div style="display: table-cell;">

<input type="text" wicket:id="surname"/>

</div>

</div>

<div style="display: table-row;">

<div style="display: table-cell;">Address: </div>

<div style="display: table-cell;">

<input type="text" wicket:id="address"/>

</div>

</div>

<div style="display: table-row;">

<div style="display: table-cell;">Email: </div>

<div style="display: table-cell;">

<input type="text" wicket:id="email"/>

</div>

</div>

27 http://java.sun.com/developer/technicalArticles/Streams/ProgIOStreams

Wicket free user guide 76

http://java.sun.com/developer/technicalArticles/Streams/ProgIOStreams

9 Wicket models and forms

</div>

<input type="submit" value="Save"/>

</form>

</body>

...

The initialization code for DropDownChoice is the following:

Model<Person> listModel = new Model<Person>();

ChoiceRenderer<Person> personRender = new ChoiceRenderer<Person>("fullName");

 personsList = new DropDownChoice<Person>("persons", listModel, loadPersons(),

 personRender){

@Override

protected boolean wantOnSelectionChangedNotifications() {

return true;

}

};

As choice render we have used the basic implementation provided with class org.apache.
wicket.markup.html.form.ChoiceRenderer that we have seen in the previous paragraph.
loadPersons() is just an utility method which generates a list of Person instances. The model for
DropDownChoice is a simple instance of Model class.

Here is the whole code of the page (except method loadPersons()):

public class PersonListDetails extends WebPage {

 private Form form;

 private DropDownChoice<Person> personsList;

 public PersonListDetails(){

 Model<Person> listModel = new Model<Person>();

 ChoiceRenderer<Person> personRender = new ChoiceRenderer<Person>("fullName");

 personsList = new DropDownChoice<Person>("persons", listModel, loadPersons(),

 personRender){

 @Override

 protected boolean wantOnSelectionChangedNotifications() {

 return true;

 }

 };

 add(personsList);

 form = new Form("form", new CompoundPropertyModel<Person>(listModel));

 form.add(new TextField("name"));

 form.add(new TextField("surname"));

 form.add(new TextField("address"));

 form.add(new TextField("email"));

 add(form);

 }

 //loadPersons()

 //...

Wicket free user guide 77

9 Wicket models and forms

}

The two models work together as a pipeline where the output of method getObject of Model is the
model object of CompoundPropertyModel. As we have seen, model chaining allows to combine the
actions of two or more models without creating new custom implementations.

9.6 Detachable models.
In chapter 6 we saw how Wicket uses serialization to store page instances. When an object is

serialized also all its referenced objects are recursively serialized. For a page this means that also all its
children components, their related models and the model object inside them will be serialized.

For model objects this could be a serious issue for (at least) two main reasons:
1. The model object could be a very large instance, hence serialization would become very

expensive in terms of time and memory.
2. We simply may not be able to use a serializable object as model object. In paragraphs 1.4 and

9.2 we stated that Wicket allows us to use POJO as backing object, but POJOs are ordinary
objects with no prespecified interface, annotation or superclass28, hence they are not required to
implement standard interface Serializable.

To cope with these problems IModel extends another interface called IDetachable.

This interface provides a method called detach() which is invoked by Wicket at the end of web
request processing, when data model is no more needed but before serialization occurs.

Overriding this method we can clean any reference to data object, keeping just the information needed
to retrieve it later (like for example the id of the table row where our data are stored). In this way we can
avoid the serialization of the object wrapped into the model, overcoming both the problem with non-
serializable objects and the one with large data objects.

Since IModel inherits from IDetachable, every model of Wicket is “detachable”, although not all of
them implement a detaching policy (like class Model).

Usually detaching operations are strictly dependent on the persistence technology adopted for model
objects (like a relational db, a NoSQL db, a queue, etc...), so it's not unusual to write a custom
detachable model suited for the persistence technology chosen for a given project.

To ease this task Wicket provides abstract model LoadableDetachableModel. This class internally
holds a transient reference to model object which is initialized the first time getObject()is called to
precess a request. The concrete data loading is delegated to abstract method T load().

The reference to model object is automatically set to null at the end of the request by method

28 See definition at http://en.wikipedia.org/wiki/Plain_Old_Java_Object#Definition

Wicket free user guide 78

9 Wicket models and forms

detach().
The following class diagram summarizes the methods defined inside LoadableDetachableModel.

onDetach and onAttach can be overridden in order to obtain further control over the detaching
procedure.

Now as example of a possible use of LoadableDetachableModel, we will build a model designed to
work with entities managed with JPA29. To understand the following code a basic knowledge of JPA is
required even if we won't go into the detail of this standard.

Warning

The following model is provided for example purposes only and is not intended
to be used in production environment. Important aspects like transaction
management are not taken into account and you should rework the code before
considering to use it.

public class JpaLoadableModel<T> extends LoadableDetachableModel<T> {

 private EntityManagerFactory entityManagerFactory;

 private Class<T> entityClass;

 private Serializable identifier;

 private List<Object> constructorParams;

 public JpaLoadableModel(EntityManagerFactory entityManagerFactory, T entity) {

 super();

 PersistenceUnitUtil util = entityManagerFactory.getPersistenceUnitUtil();

 this.entityManagerFactory = entityManagerFactory;

 this.entityClass = (Class<T>) entity.getClass();

 this.identifier = (Serializable) util.getIdentifier(entity);

 setObject(entity);

 }

 @Override

 protected T load() {

 T entity = null;

 if(identifier != null){

 EntityManager entityManager = entityManagerFactory.createEntityManager();

 entity = entityManager.find(entityClass, identifier);

 }

29 http://en.wikipedia.org/wiki/Java_Persistence_API

Wicket free user guide 79

http://en.wikipedia.org/wiki/Java_Persistence_API

9 Wicket models and forms

 return entity;

 }

 @Override

 protected void onDetach() {

 super.onDetach();

 T entity = getObject();

 PersistenceUnitUtil persistenceUtil = entityManagerFactory.getPersistenceUnitUtil();

 if(entity == null) return;

 identifier = (Serializable) persistenceUtil.getIdentifier(entity);

 }

}

The constructor of the model takes in input two parameters: an implementation of the JPA interface
javax.persistence.EntityManagerFactory to manage JPA entities and the entity that must be
handled by this model. Inside its constructor the model saves the class of the entity and its id (which
could be null if the entity has not been persisted yet). These two informations are required to retrieve
the entity at a later time and are use by method load.
onDetach is responsible for updating the entity id before detachment occurs. The id can change the

first time an entity is persisted (JPA generates a new id and assigns it to the entity).
Please note that this model is not responsible for saving any changes occurred to the entity object

before it is detached. If we don't want to loose these changes we must explicitly persist the entity before
the detaching phase occurs.

Warning

Since the model of this example holds a reference to interface Entity
ManagerFactory, the implementation in use must be serializable.

9.7 Using more than one model in a component
Sometimes our custom components may need to use more than a single model to work properly. In

such a case we must manually detach the additional models used by our components. In order to do
this we can overwrite Component's method onDetach that is called at the end of the current request.
The following is the generic code of a component that uses two models:

/**

 *

 * fooModel is used as main model while beeModel must be manually detached

 *

 */

public class ComponetTwoModels extends Component{

private IModel<Bee> beeModel;

public ComponetTwoModels(String id, IModel<Foo> fooModel, IModel<Bee> beeModel) {

super(id, fooModel);

this.beeModel = beeModel;

}

Wicket free user guide 80

9 Wicket models and forms

@Override

public void onDetach() {

 if(beeModel != null)

 beeModel.detach();

 super.onDetach();

}

}

When we overwrite onDetach we must call the super class implementation of this method, usually as
last line in our custom implementation.

9.8 Use models!
Like many people new to Wicket, you may need a little time to fully understand the power and the

advantages of using models. Moving your first steps with Wicket you may be tempted to pass row
objects to your components instead of using models:

/**

 *

 * NOT TO DO: passing row objects to components instead of using models!

 *

 */

public class CustomComponent extends Component{

private FooBean fooBean;

public CustomComponent(String id, FooBean fooBean) {

super(id);

this.fooBean = fooBean;

}

//...some other ugly code :)...

}

That's absolutely a bad practice and you must avoid it. Using models we not only decouple our
components from data source, but we can also relay on them (if they are dynamic) to work with the most
up-to-date version of our model object. If we decide to bypass models we lose all these advantages and,
moreover, we force model objects to be serialized.

9.9 Summary
Models are one of the core concepts of Wicket and they are the basic ingredient needed to taste the

real power of this framework. In this chapter we have seen how to use models to bring data to our
components without littering their code with technical details about their persistence strategy.

We have also introduced Wicket forms as complementary topic. With forms and models we are able to
bring our applications to life allowing them to interact with users.

But what we have seen in this chapter about Wicket forms is just the tip of the iceberg. That's why the
next chapter is entirely dedicated to them.

Wicket free user guide 81

10 Wicket forms in detail

10 Wicket forms in detail

In the previous chapter we have only scratched the surface of Wicket forms. Component Form was
designed to not simply collect user input but also to extend the semantic of the classic HTML forms with
new features.

For example one of such features is the ability to work with nested forms (they will be discussed in
paragraph 10.5).

In this chapter we will continue to explore Wicket forms learning how to master them and how to build
effective and user-proof forms for our web applications.

10.1 Default form processing
In paragraph 9.3 we have seen a very basic usage of Form component and we didn't pay much

attention to what happens behind the scenes of form submission. In Wicket when we submit a form we
trigger the following steps on server side:

1. Form validation: user input is checked to see if it satisfies the validation rules set on the form.
If validation fails, step number 2 is skipped and the form should display a feedback message to
explain to user what went wrong. During this step input values (which are simple strings sent
with a web request) are converted into Java objects.
In the next paragraphs we will explore the infrastructures provided by Wicket for the three sub-
tasks involved into form validation, which are: conversion of user input into objects, validation of
user input, and visualization of feedback messages.

2. Updating of models: if validation succeeds, the form updates the model of its children
components with the converted values obtained in the previous step.

3. Invoking callback methods onSubmit() or onError(): if we didn't have any validation error,
method onSubmit() is called, otherwise onError() will be called. The default
implementation of both these methods is left empty and we can override them to perform
custom actions.

Note

Please note that the model of form components is updated only if no validation
error occurred (i.e. step two is performed only if validation succeeds).

Without going into too much detail, we can say that the first two steps of form processing correspond to
the invocation of one or more Form's internal methods (which are declared protected and final).
Some examples of these methods are validate(), which is invoked during validation step, and
updateFormComponentModels(), which is used during models updating step.

The whole form processing is started invoking public method process(IFormSubmitter) (Later in
paragraph 10.4 we will introduce interface IFormSubmitter).

10.2 Form validation and feedback messages
A basic example of validation rule is to make a field required. In paragraph 9.3.2 we have already seen

how this can be done calling setRequired(true) on a field. However, more generally, to set a
validation rule on a FormComponent we must add the corresponding validator to it.

A validator is an implementation of interface org.apache.wicket.validation.IValidator and
FormComponent has a version of method add which takes in input this interface.

Wicket free user guide 82

10 Wicket forms in detail

For example if we want to use a text field to insert an email address, we could use the built-in validator
EmailAddressValidator to ensure that inserted input will respect the email format local-
part@domain30:

TextField email = new TextField("email");

email.add(new EmailAddressValidator());

Wicket comes with a set of built-in validators that should suit most of our needs. We will see them in
paragraph 10.2.3.

10.2.1 Feedback messages and localization

Wicket generates a feedback message for each field that doesn't satisfy one of its validation rules. For
example the message generated when a required field is left empty is the following

Field '<label>' is required.

<label> is the value of the label model set on a FormComponent with method setLabel(IModel
<String> model). If such model is not provided, component id will be used as default value.

The entire infrastructure of feedback messages is built on top of Java internationalization (I18N)
support and it uses resource bundles31 to store messages.

Note

The topics of internationalization will be covered in chapter 12. For now we will
give just few notions needed to understand the examples from this chapter.

By default resource bundles are stored into properties files but we can easily configure other sources
as described later in paragraph 12.4.5.

Default feedback messages (like the one above for required fields) are stored into file
Application.properties placed inside Wicket package org.apache.wicket. Opening this file we can
find the message used for required fields:

Required=Field '${label}' is required.

We can note the key used to identify the bundle (Required in our case) and the label parameter written
with expression language32 (${label}). Scrolling down this file we can also find the message used by
validator EmailAddressValidator:

EmailAddressValidator=The value of '${label}' is not a valid email address.

By default FormComponent provides 3 parameters for feedback message: input (the value that failed
validation), label and name (this later is the id of the component).

Warning

Remember that component model is updated with user input only if validation
succeeds! As a consequence, we can't retrieve the wrong value inserted for a

30 http://en.wikipedia.org/wiki/Email_address
31 http://docs.oracle.com/javase/tutorial/i18n/resbundle/index.html
32 http://en.wikipedia.org/wiki/Expression_Language

Wicket free user guide 83

http://en.wikipedia.org/wiki/Expression_Language
http://docs.oracle.com/javase/tutorial/i18n/resbundle/index.html
http://en.wikipedia.org/wiki/Email_address

10 Wicket forms in detail

field from its model. Instead, we should use method getValue() of class
FormComponent. (This method will be introduced in the example used in
paragraph 10.2.5)

10.2.2 Displaing feedback messages and filtering them

To display feedback messages we must use component org.apache.wicket.markup.html.
panel.FeedbackPanel. This component automatically reads all the feedback messages generated
during form validation and displays them with an unordered list:

<ul class="feedbackPanel">

<li class="feedbackPanelERROR">

Field 'Username' is required.

CSS classes "feedbackPanel" and "feedbackPanelERROR" can be used in order to customize the
style of the message list33:

The component can be freely placed inside the page and we can set the maximum amount of
displayed messages with method setMaxMessages().

Error messages can be also filtered using three built-in filters:
• ComponentFeedbackMessageFilter: shows only messages coming from a specific

component.
• ContainerFeedbackMessageFilter: shows only messages coming from a specific container or

from any of its children components.
• ErrorLevelFeedbackMessageFilter: shows only messages with a level of severity equals or

greater than a given lower bound. Class FeedbackMessage defines a set of static constants to
express different levels of severity: DEBUG, ERROR, WARNING, INFO, SUCCESS, etc....
Levels of severity for feedback messages are discussed in paragraph 10.2.6.

These filters are intended to be used when there are more than one feedback panel (or more than one
form) in the same page. We can pass a filter to a feedback panel via constructor or using its setter
method setFilter. Custom filters can be created implementing interface IFeedbackMessage
Filter. An example of custom filter is illustrated on page 89.

10.2.3 Built-in validators

Wicket already provides a number of built-in validators ready to be used. The following table is a short
reference where validators are listed along with a brief description of what they do. The default feedback
message used by each of them is reported as well:

33 The style of Illustration 10.1 was created by Janko Jovanovic. See http://css.dzone.com/news/css-message-boxes-different-me

Wicket free user guide 84

Illustration 10.1: Example of styling of feedback
messages list

http://css.dzone.com/news/css-message-boxes-different-me
http://css.dzone.com/users/dzovan

10 Wicket forms in detail

Name Description Message

EmailAddressValidator Checks if input respects the format
local-part@domain

The value of '${label}' is not a
valid email address.

UrlValidator Checks if input is a valid URL. We can

specify in the constructor which

protocols are allowed (http://,

https://, and ftp://).

The value of '${label}' is not a

valid URL.

DateValidator Validator class that can be extended or

used as a factory class to get date

validators to check if a date is bigger

than a lower bound (method

minimum(Date min)), smaller than a

upper bound (method maximum(Date

max)) or inside a range (method

range(Date min, Date max)).

For minimum validator:

The value of '${label}' is less

than the minimum of ${minimum}.

For maximum validator:

The value of '${label}' is

larger than the maximum of $

{maximum}.

For range validator:

The value of '${label}' is not

between ${minimum} and $

{maximum}.

RangeValidator Validator class that can be extended or

used as a factory class to get validators

to check if a value is bigger than a given

lower bound (method minimum(T

min)), smaller than a upper bound

(method maximum(T max)) or inside a

range (method range(T min,T

max)).

The type of the value is a generic

subtype of java.lang.Comparable

and must implement Serializable

interface.

For minimum validator:

The value of '${label}' must be

at least ${minimum}.

For maximum validator:

The value of '${label}' must be

at most ${maximum}.

For range validator:

The value of '${label}' must be

between ${minimum} and $

{maximum}.

StringValidator Validator class that can be extended or

used as a factory class to get validators

to check if the length of a string value is

bigger then a given lower bound

(method minimumLength (int

min)), smaller then a given upper

bound (method maximumLength (int

max)) or within a given range (method
lengthBetween(int min, int

max)).

To accept only string values consisting

of exactly n characters, we must use

method exactLength(int length).

For minimum validator:

The value of '${label}' is

shorter than the minimum of $

{minimum} characters.

For maximum validator:

The value of '${label}' is

longer than the maximum of $

{maximum} characters.

For range validator:

The value of '${label}' is not

between ${minimum} and $

{maximum} characters long.

Wicket free user guide 85

10 Wicket forms in detail

For exact validator:

The value of '${label}' is not

exactly ${exact} characters

long.

CreditCardValidator Checks if input is a valid credit card

number. This validator supports some of

the most popular credit cards (like

“American Express", "MasterCard",

“Visa” or “Diners Club”).

The credit card number is

invalid.

EqualPasswordInputValidator This validator checks if two password

fields have the same value.

${label0} and ${label1} must be

equal.

10.2.4 Overriding standard feedback messages with custom bundles

If we don't like the default validation messages, we can override them providing custom properties
files. In these files we can write our custom messages using the same keys of the messages we want to
override. For example if we wanted to override the default message for invalid email addresses, our
properties file would contain a line like this:

EmailAddressValidator=Man, your email address is not good!

As we will see in the next chapter, Wicket searches for custom properties files in various positions
inside application's class path, but for now we will consider just the properties file placed next to our
application class. The name of this file must be equal to the name of our application class:

The example project OverrideMailMessage overrides email validator's message with a new one which
reports also the value that failed validation:

EmailAddressValidator=The value '${input}' inserted for field '${label}' is not a valid

 email address.

10.2.5 Creating custom validators

If our application requires a complex validation logic and built-in validators are not enough, we can
always implement our own custom validators. For example (project UsernameCustomValidator)
suppose we are working on the registration page of our site where users can create their profile
choosing their username. Our registration form should validate the new username checking if it was

Wicket free user guide 86

10 Wicket forms in detail

already chosen by another user. In a situation like this we may need to implement a custom validator
that queries a specific data source to check if a username is already in use.

Although validators are nothing but implementations of interface IValidator, Wicket provides the
convenience class org.apache.wicket.validation.validator.AbstractValidator as base
class for custom validators. For the sake of simplicity, the validator of our example will check the given
username against a fixed list of three existing usernames:

public class UsernameValidator extends AbstractValidator<String> {

 List<String> existingUsernames = Arrays.asList("bigJack", "anonymous", "mrSmith");

 @Override

 protected void onValidate(IValidatable<String> validatable) {

 String chosenUserName = validatable.getValue();

 if(existingUsernames.contains(chosenUserName))

 error(validatable);

 }

 @Override

 protected String resourceKey() {

 return "UsernameValidator";

 }

 @Override

 protected Map<String, Object> variablesMap(IValidatable<String> validatable) {

 Map<String, Object> map = super.variablesMap(validatable);

 Random random = new Random();

 map.put("suggestedUserName", validatable.getValue() + random.nextInt());

 return map;

 }

}

Class AbstractValidator comes with three methods that can be overridden to implement a custom
validation logic:

• onValidate: this method contains the concrete validation logic and must call method error
(Ivalidatable) when validation fails. It takes in input an instance of interface
IValidatable which represents the component being validated.

• resourceKey: returns the key of the resource corresponding to the feedback message for this
validator. The default implementation of this method returns the name of the class, hence in the
example above the overridden version of resourceKey is redundant.

• variablesMap: this method can be overridden to provide further variables to the feedback
message.

In our example if validation fails, we suggest a possible username concatenating the given input with a
pseudo-random integer. This value is passed to the feedback message with variable
suggestedUserName. The message is inside application's properties file:

UsernameValidator=The username '${input}' is already in use. Try with

 '${suggestedUserName}'

Wicket free user guide 87

10 Wicket forms in detail

The code of the home page of the project will be examined in the next paragraph after we have
introduced the topic of flash messages.

10.2.6 Using flash messages

So far we have considered just the error messages generated during validation step. However Wicket
Component class provides a set of methods to explicitly generate feedback messages called flash
messages. These methods are:

• debug(Serializable message)
• info(Serializable message)
• success(Serializable message)
• warn(Serializable message)
• error(Serializable message)
• fatal(Serializable message)

Each of these methods corresponds to a level of severity for the message. The list above is sorted by
increasing level of severity.

In the example seen in the previous paragraph we have a form which uses success method to notify
user when the inserted username is valid. Inside this form there are two FeedbackPanel components:
one to display the error message produced by custom validator and the other one to display the success
message. The code of the example page is the following:

Html:

<body>

<form wicket:id="form">

Username: <input type="text" wicket:id="username"/>

<input type="submit"/>

</form>

<div style="color:green" wicket:id="succesMessage">

</div>

<div style="color:red" wicket:id="feedbackMessage">

</div>

</body>

Java code:

public class HomePage extends WebPage {

 public HomePage(final PageParameters parameters) {

Form form = new Form("form"){

@Override

protected void onSubmit() {

super.onSubmit();

success("Username is good!");

}

};

TextField mail;

form.add(mail = new TextField("username", Model.of("")));

mail.add(new UsernameValidator());

add(new FeedbackPanel("feedbackMessage",

Wicket free user guide 88

10 Wicket forms in detail

new ExactErrorLevelFilter(FeedbackMessage.ERROR)));

add(new FeedbackPanel("succesMessage",

new ExactErrorLevelFilter(FeedbackMessage.SUCCESS)));

add(form);

 }

 class ExactErrorLevelFilter implements IFeedbackMessageFilter{

 private int errorLevel;

public ExactErrorLevelFilter(int errorLevel){

 this.errorLevel = errorLevel;

}

public boolean accept(FeedbackMessage message) {

return message.getLevel() == errorLevel;

}

 }

 //UsernameValidator definition

 //...

}

The two feedback panels must be filtered in order to display just the messages with a given level of
severity (ERROR for validator message and SUCCESS for form's flash message). Unfortunately the
built-in message filter ErrorLevelFeedbackMessageFilter is not suitable for this task because its
filter condition does not check for an exact error level (the given level is used as lower bound value). As
a consequence, we had to build a custom filter (inner class ExactErrorLevelFilter) to accept only
the desired severity level (see method accept of interface IFeedbackMessageFilter).

10.3 Input value conversion
Working with Wicket we will rarely need to worry about conversion between input values (which are

strings) and Java types because in most cases the default conversion mechanism will be smart enough
to infer the type of the model object and perform the proper conversion. However, sometimes we may
need to work under the hood of this mechanism to make it properly work or to perform custom
conversions. That's why this paragraph will illustrate how to control input value conversion.

The component that is responsible for converting input is the FormComponent itself with its method
convertInput(). In order to convert its input a FormComponent must know the type of its model
object. This parameter can be explicitly set with method setType(Class<?> type):

//this field must receive an integer value

TextField integerField = new TextField("number", new
Model()).setType(Integer.class));

If no type has been provided, FormComponent will try to ask its model for this information. Models
PropertyModel and CompoundPropertyModel can use reflection to get the type of object model. By
default, if FormComponent can not obtain the type of its model object in any way, it will consider it as a
simple String.

Once FormComponent has determined the type of model object, it can look up for a converter, which
is the entity in charge of converting input to Java object and vice versa. Converters are instances of
interface org.apache.wicket.util.convert.IConverter and are registered by our application

Wicket free user guide 89

10 Wicket forms in detail

class on start up.
To get a converter for a specific type we must call method getConverter(Class<C> type) on the

interface IConverterLocator returned by Application's method getConverterLocator():

//retrieve converter for Boolean type

Application.get().getConverterLocator().getConverter(Boolean.class);

Note

Components which are subclasses of AbstractSingleSelectChoice don't
follow the schema illustrated above to convert user input.
These kinds of components (like DropDownChoice and RadioChoice34) use
their choice render and their collection of possible choices to perform input
conversion.

10.3.1 Creating custom application-scoped converters

The default converter locator used by Wicket is org.apache.wicket.ConverterLocator. This
class provides converters for the most common Java types. Here we can see the converters registered
inside its constructor:

public ConverterLocator()

{

set(Boolean.TYPE, BooleanConverter.INSTANCE);

set(Boolean.class, BooleanConverter.INSTANCE);

set(Byte.TYPE, ByteConverter.INSTANCE);

set(Byte.class, ByteConverter.INSTANCE);

set(Character.TYPE, CharacterConverter.INSTANCE);

set(Character.class, CharacterConverter.INSTANCE);

set(Double.TYPE, DoubleConverter.INSTANCE);

set(Double.class, DoubleConverter.INSTANCE);

set(Float.TYPE, FloatConverter.INSTANCE);

set(Float.class, FloatConverter.INSTANCE);

set(Integer.TYPE, IntegerConverter.INSTANCE);

set(Integer.class, IntegerConverter.INSTANCE);

set(Long.TYPE, LongConverter.INSTANCE);

set(Long.class, LongConverter.INSTANCE);

set(Short.TYPE, ShortConverter.INSTANCE);

set(Short.class, ShortConverter.INSTANCE);

set(Date.class, new DateConverter());

set(Calendar.class, new CalendarConverter());

set(java.sql.Date.class, new SqlDateConverter());

set(java.sql.Time.class, new SqlTimeConverter());

set(java.sql.Timestamp.class, new SqlTimestampConverter());

set(BigDecimal.class, new BigDecimalConverter());

}

If we want to add more converters to our application, we can override Application's method
newConverterLocator which is used by application class to build its converter locator.

To illustrate how to implement custom converters and use them in our application, we will build a form
with two text field: one to insert a regular expression pattern and another one to insert a string value that
will be split with the given pattern.

34 RadioChoice is introduced in paragraph 10.10.3

Wicket free user guide 90

10 Wicket forms in detail

The first text field will have an instance of class java.util.regex.Pattern as model object. The
final page will look like this (the code of this example is from project CustomConverter.):

The conversion between Pattern and String is quite straightforward. The code of our custom
converter is the following:

public class RegExpPatternConverter implements IConverter<Pattern> {

@Override

public Pattern convertToObject(String value, Locale locale) {

return Pattern.compile(value);

}

@Override

public String convertToString(Pattern value, Locale locale) {

return value.toString();

}

}

Methods declared by interface IConverter take in input also a Locale parameter in order to deal
with locale-sensitive data and conversions. We will learn more about locales and internationalization in
chapter 12.

Once we have implemented our custom converter, we must override method
newConverterLocator() inside our application class and tell it to add our new converter to the
default set:

@Override

protected IConverterLocator newConverterLocator() {

ConverterLocator defaultLocator = new ConverterLocator();

defaultLocator.set(Pattern.class, new RegExpPatternConverter());

return defaultLocator;

}

Finally, in the home page of the project we build the form which displays (with a flash message) the
tokens obtained splitting the string with the given pattern:

public class HomePage extends WebPage {

Wicket free user guide 91

Illustration 10.2: A form with a TextField using a
java.util.regex.Pattern as model object

10 Wicket forms in detail

 private Pattern regExpPatter;

 private String stringToSplit;

 public HomePage(final PageParameters parameters) {

 TextField mail;

TextField stringToSplitTxt;

 Form form = new Form("form"){

@Override

protected void onSubmit() {

super.onSubmit();

String messageResult = "Tokens for the given string and pattern:
";

String[] tokens = regExpPatter.split(stringToSplit);

for (String token : tokens) {

messageResult += "- " + token + "
";

}

success(messageResult);

}

};

form.setDefaultModel(new CompoundPropertyModel(this));

form.add(mail = new TextField("regExpPatter"));

form.add(stringToSplitTxt = new TextField("stringToSplit"));

add(new FeedbackPanel("feedbackMessage").setEscapeModelStrings(false));

add(form);

 }

}

Note

If the inserted input can not be converted to the target type, FormComponent
will generate the default error message “The value of '${label}' is not a
valid ${type}.”. The bundle key for this message is IConverter.

10.4 Submit form with an IFormSubmittingComponent
Besides submitting forms with a standard HTML submit button, Wicket allows us to use special

components which implement interface IFormSubmittingComponent. This entity is a subinterface of
IFormSubmitter:

Wicket free user guide 92

10 Wicket forms in detail

At the beginning of this chapter we have seen that form processing is started by method process
which takes in input an instance of IFormSubmitter. This parameter corresponds to the
IFormSubmittingComponent clicked by user to submit the form and it is null if we have used a
standard HTML submit button (like we have done so far).

A submitting component is added to a form just like any other child component using method
add(Component...).

A form can have any number of submitting components and we can specify which one among them is
the default one calling Form's method setDefaultButton(IFormSubmittingComponent
 component). The default submitter is the one that will be used when user presses 'Enter' key in a field
of the form. In order to make the default button work, Wicket will add to our form an hidden <div>
containing a text field and a submit button with some JavaScript code to trigger it:

<div style="width:0px;height:0px;position:absolute;left:-100px;top:-100px;

 overflow:hidden">

<input type="text" autocomplete="off"/>

<input type="submit" name="submit2" onclick=" var b=document...."/>

</div>

Just like Wicket forms, also interface IFormSubmitter defines methods onSubmit and onError.
These two methods have the priority over the namesake methods of the form, meaning that when a
form is submitted with an IFormSubmitter, the onSubmit of the submitter is called before the one of
the form. Similarly, if validation errors occurs during the first step of form processing, submitter's method
onError is called before the one of the form.

Note

Starting from Wicket version 6.0 interface IFormSubmitter defines a further
callback method called onAfterSubmit(). This method is called after form's
method onSubmit() has been executed.

10.4.1 Components Button and SubmitLink

Component org.apache.wicket.markup.html.form.Button is a basic implementation of a
form submitter. It can be used with either tag <input> or <button>. The string model taken in input by
its constructor is used as button label and it will be the value of the markup attribute value.

In the following snippet we have a form with two submit buttons bound to a <input> tag. One of them
is set as default button and both have a string model for the label:

Html:

<body>

<form wicket:id="form">

Username: <input type="text" wicket:id="username"/>

<input type="submit" wicket:id="submit1"/>

<input type="submit" wicket:id="submit2"/>

</form>

</body>

Java code:

public class HomePage extends WebPage {

 public HomePage(final PageParameters parameters) {

Wicket free user guide 93

10 Wicket forms in detail

Form form = new Form("form");

 form.add(new TextField("username", Model.of("")));

 form.add(new Button("submit1", Model.of("First submitter")));

Button secondSubmitter;

form.add(secondSubmitter = new Button("submit2", Model.of("Second submitter")));

 form.setDefaultButton(secondSubmitter);

add(form);

 }

}

Generated markup:

<form wicket:id="form" id="form1" method="post" action="?0-1.IFormSubmitListener-form">

 <div>

 ...

 <!-- Code generated by Wicket to handle the default button -->

 ...

 </div>

 Username: <input type="text" wicket:id="username" value="" name="username"/>

 <input type="submit" wicket:id="submit1" name="submit1" id="submit13" value="First
submitter"/>

 <input type="submit" wicket:id="submit2" name="submit2" id="submit22" value="Second
submitter"/>

</form>

Another component that can be used to submit a form is org.apache.wicket.markup.
html.form.SubmitLink. This component uses JavaScript to submit the form. Like the name
suggests, the component can be used with tag <a>, but it can be also bound to any other tag that
supports the event handler onclick. When used with tag <a>, the JavaScript code needed to submit the
form will be placed inside href attribute while with other tags the script will go inside the event handler
onclick.

A notable difference between this component and Button is that SubmitLink can be placed outside
the form it must submit. In this case we must specify the form to submit in its constructor:

Html:

<html xmlns:wicket="http://wicket.apache.org">

<head>

</head>

<body>

<form wicket:id="form">

Password: <input type="password" wicket:id="password"/>

</form>

<button wicket:id="externalSubmitter">

Submit

</button>

</body>

</html>

Wicket free user guide 94

10 Wicket forms in detail

Java code:

public class HomePage extends WebPage {

 public HomePage(final PageParameters parameters) {

Form form = new Form("form");

form.add(new PasswordTextField("password", Model.of("")));

//specify the form to submit

add(new SubmitLink("externalSubmitter", form));

add(form);

 }

}

10.4.2 Disabling default form processing

With an IFormSubmittingComponent we can choose to skip the default form submission process
setting the appropriate flag to false with method setDefaultFormProcessing. When the default form
processing is disabled only submitter's onSubmit is called while form's validation and models updating
are skipped.

This can be useful if we want to implement a “Cancel” button on our form which redirects user to
another page without validating his/her input.

When we set this flag to false we can decide to manually invoke form processing by calling method
process(IFormSubmittingComponent).

10.5 Nested forms
As you might already know, HTLM doesn't allow to have nested forms35. However with Wicket we can

overcome this limitation adding one or more form components to a parent form.
This can be useful if we want to split a big form into smaller ones in order to reuse them and to better

distribute responsibilities among different components.
Forms can be nested to an arbitrary level:

<form wicket:id="outerForm">

...

<form wicket:id="innerForm">

...

<form wicket:id="veryInnerForm">

...

</form>

</form>

</form>

When a form is submitted also its nested forms are submitted and they participate to validation step.
This means that if a nested form contains invalid input values, the outer form won't be submitted. On the
contrary, nested forms can be singularly submitted without depending on the status of their outer form.

To submit a parent form when one of its children forms is submitted, we must override its method
wantSubmitOnNestedFormSubmit and make it return true.

10.6 Multi-line text input

35 See http://www.w3.org/MarkUp/html3/forms.html where it is stated: 'There can be several forms in a single document, but the FORM element
can't be nested.'

Wicket free user guide 95

http://www.w3.org/MarkUp/html3/forms.html

10 Wicket forms in detail

HTML provides a multi-line text input control with tag <textarea>. The Wicket counterpart for this kind
of control is component org.apache.wicket.markup.html.form.TextArea:

Markup code:

<textarea wicket:id="description" rows="5" cols="40"></textarea>

Java code:

form.add(new TextArea("description", Model.of("")));

Component TextArea is used just like any other single-line text field. To specify the size of the text
area we can write attributes rows and cols directly in the markup file or we can use attribute modifiers
(seen in paragraph 4.2) in the Java code.

10.7 File upload
Wicket supports file uploading with component FileUploadField which must be used with tag

<input> and attribute type equals to "file". In order to send a file on form submission we must enable
multipart mode calling setMultiPart(true)on our form.

In the next example (project UploadSingleFile) we will see a form which allows users to upload a file
into the temporary directory of the server (path /tmp on Unix/Linux systems):

Html:

<html>

<head>

</head>

<body>

<h1>Upload your file here!</h1>

<form wicket:id="form">

<input type="file" wicket:id="fileUploadField"/>

<input type="submit" value="Upload"/>

</form>

<div wicket:id="feedbackPanel">

</div>

</body>

</html>

Java code:

public class HomePage extends WebPage {

 private FileUploadField fileUploadField;

 public HomePage(final PageParameters parameters) {

 fileUploadField = new FileUploadField("fileUploadField");

 Form form = new Form("form"){

 @Override

 protected void onSubmit() {

 super.onSubmit();

 FileUpload fileUpload = fileUploadField.getFileUpload();

Wicket free user guide 96

10 Wicket forms in detail

 try {

File file = new File(System.getProperty("java.io.tmpdir") + "/" +

 fileUpload.getClientFileName());

 fileUpload.writeTo(file);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

form.setMultiPart(true);

//set a limit for uploaded file's size

form.setMaxSize(Bytes.kilobytes(100));

form.add(fileUploadField);

add(new FeedbackPanel("feedbackPanel"));

add(form);

 }

}

The code that copies the uploaded file into the temporary directory is inside form's onSubmit. The
uploaded file is handled with an instance of class FileUpload returned by FileUploadField's
method getFileUpload(). This class provides a set of methods to perform some common tasks like
getting the name of the uploaded file (getClientFileName()), coping the file into a directory
(writeTo(destinationFile)), calculating file digest (getDigest(digestAlgorithm)) and so
on.
Form component can limit the size for uploaded files using its method setMaxSize(size). In the

example we have set this limit to 100 kb to prevent users from uploading files bigger then this size.

 Note

The maximum size for uploaded files can be also set at application level using

method setDefaultMaximumUploadSize(Bytes maxSize) of setting

interface IApplicationSettings:

@Override

public void init()

{

 getApplicationSettings().setDefaultMaximumUploadSize(Bytes.

 kilobytes(100));

}

10.7.1 Upload multiple files

If we need to upload multiple files at once, we can use component MultiFileUploadField which
allows user to select an arbitrary number of files to send on form submission.

An example showing how to use this component can be found in Wicket module wicket-examples
in page MultiUploadPage.java. The live example is hosted at http://www.wicket-library.com/wicket-
examples-6.0.x/upload/multi.

10.8 Creating complex form components with FormComponentPanel

Wicket free user guide 97

http://www.wicket-library.com/wicket-examples-6.0.x/upload/multi
http://www.wicket-library.com/wicket-examples-6.0.x/upload/multi

10 Wicket forms in detail

In chapter 3.2.2 we have learnt how to use class Panel to create custom components with their own
markup and with an arbitrary number of children components.

While it's perfectly legal to use Panel also to group form components, the resulting component won't
be itself a form component and it won't participate to form submission's steps.

This could be a strong limitation if the custom component needs to coordinate its children during sub-
tasks like input conversion or model updating. That's why in Wicket we have component
org.apache.wicket.markup.html.form.FormComponentPanel which combines the features of
both a Panel (it has it's own markup file) and a FormComponent (it is a subclass of FormComponent).

A typical scenario in which we may need to implement a custom FormComponentPanel is when our
web application and its users work with different units of measurement for the same data.

To illustrate this possible scenario, let's consider for example a form where user can insert a
temperature that will be recorded after being converted in Kelvin degrees (see example project
CustomFormComponentPanel).

Kelvin scale is wildly adopted among the scientific community and it is one of the seven base units of
the International System of Units36, so it makes perfect sense to store temperatures expressed with this
unit of measurement.

However, in our everyday life we still use other temperature scales like Celsius or Fahrenheit, so it
would be nice to have a component which internally works with Kelvin degrees and automatically
applies conversion between Kelvin temperature scale and the one adopted by user.

In order to implement such a component, we can make a subclass of FormComponentPanel and
leverage methods convertInput and onBeforeRender: inside convertInput we will convert input
value to Kelvin degrees while method onBeforeRender will take care of converting the Kelvin value to
the temperature scale adopted by user.

Our custom component will contain two children components: a text field to let user insert and edit a
temperature value and a label to display the letter corresponding to user's temperature scale (F for
Fahrenheit and C for Celsius). The resulting markup file is the following:

<html>

<head>

</head>

<body>

 <wicket:panel>

Registered temperature: <input size="3" maxlength="3"

 wicket:id="registeredTemperature"/>

<label wicket:id="mesuramentUnit"></label>

 </wicket:panel>

</body>

</html>

As shown in the markup above FormComponentPanel uses the same tag <wicket:panel> used by
Panel to define its markup. Now let's see the Java code of the new form component starting from
method onInitialize():

public class TemperatureDegreeField extends FormComponentPanel<Double> {

private TextField<Double> userDegree;

public TemperatureDegreeField(String id) {

super(id);

36 http://en.wikipedia.org/wiki/International_System_of_Units

Wicket free user guide 98

10 Wicket forms in detail

}

public TemperatureDegreeField(String id, IModel<Double> model) {

super(id, model);

}

@Override

protected void onInitialize() {

super.onInitialize();

 AbstractReadOnlyModel<String> labelModel=new AbstractReadOnlyModel<String>(){

@Override

public String getObject() {

if(getLocale().equals(Locale.US))

return "°F";

return "°C";

}

};

add(new Label("mesuramentUnit", labelModel));

add(userDegree=new TextField<Double>("registeredTemperature", new

 Model<Double>()));

userDegree.setType(Double.class);

}

Inside method onInitialize we have created a read-only model for the label that displays the letter
corresponding to the user's temperature scale. To determinate which temperature scale is used by user,
we retrieve the Locale from session with Component's method getLocale() (we will talk more about
this method in chapter 12). Then, if locale is the one corresponding to the United States, the chosen
scale will be Fahrenheit, otherwise it will be considered as Celsius.

In the final part of onInitialize() we add the two components to our custom form component. You
may have noticed that we have explicitly set the type of model object for the text field to double. This is
necessary as the starting model object is a null reference and this prevents the component from
automatically determining the type of its model object.

Now we can look at the rest of the code containing methods convertInput and onBeforeRender:

@Override

protected void convertInput() {

Double userDegreeVal = userDegree.getConvertedInput();

Double kelvinDegree;

if(getLocale().equals(Locale.US)){

kelvinDegree = userDegreeVal + 459.67;

BigDecimal bdKelvin = new BigDecimal(kelvinDegree);

BigDecimal fraction = new BigDecimal(5).divide(new BigDecimal(9));

kelvinDegree = bdKelvin.multiply(fraction).doubleValue();

}else{

kelvinDegree = userDegreeVal + 273.15;

}

setConvertedInput(kelvinDegree);

Wicket free user guide 99

10 Wicket forms in detail

}

@Override

protected void onBeforeRender() {

super.onBeforeRender();

Double kelvinDegree = (Double) getDefaultModelObject();

Double userDegreeVal = null;

if(kelvinDegree == null) return;

if(getLocale().equals(Locale.US)){

BigDecimal bdKelvin = new BigDecimal(kelvinDegree);

BigDecimal fraction = new BigDecimal(9).divide(new BigDecimal(5));

kelvinDegree = bdKelvin.multiply(fraction).doubleValue();

userDegreeVal = kelvinDegree - 459.67;

}else{

userDegreeVal = kelvinDegree - 273.15;

}

userDegree.setModelObject(userDegreeVal);

}

}

Since our component does not directly receive the user input, convertInput() must read this value
from the inner text field using FormComponent's method getConvertedInput() which returns the
input value already converted to the type specified for the component (Double in our case). Once we
have the user input we convert it to kelvin degrees and we use the resulting value to set the converted
input for our custom component (using method setConvertedInput(T convertedInput)).

 Method onBeforeRender() is responsible for synchronizing the model of the inner textfield with the
model of our custom component. To do this we retrieve the model object of the custom component with
method getDefaultModelObject(), then we convert it to the temperature scale adopted by user
and finally we use this value to set the model object of the text field.

10.9 Stateless form
In chapter 6 we have seen how Wicket pages can be divided into two categories: stateful and

stateless. Pages that are stateless doesn't need to be stored into user session and they should be used
instead of stateful pages when we don't need to save any user data into session (for example in the
public area of a site).

Besides saving resources on server-side, stateless pages can be also adopted to improve user
experience and to avoid security weaknesses. A typical situation where a stateless page can bring these
benefits is when we have to implement a login page.

For this kind of page we might encounter two potential problems if we chose to use a stateful page.
The first problem occurs when user tries to login without a valid session assigned to him. This could
happen if user leaves the login page opened for a period of time bigger than session timeout and then
he decides to enter into the site. Under these conditions the user will be redirected to a 'Page expired'
error page, which is not exactly a good thing for user experience.

The second problem occurs when a malicious user or a web crawler program starts to attempt to login
to our application, generating a huge number of page versions and consequently increasing the size of
user session.

Wicket free user guide 100

10 Wicket forms in detail

To avoid these kinds of problems we should build a stateless login page which does not depend on
user session. Wicket provides a special version of Form component called StatelessForm which is
stateless by default (i.e its method getStatelessHint() returns true), hence it's an ideal solution
when we want to build a stateless page with a form. A possible implementation of our login form is the
following (example project StatelessLoginForm):

Html:

<html>

 <head>

 <meta charset="utf-8" />

 </head>

 <body>

 <div>Session is <b wicket:id="sessionType"></div>

 <div>Type 'user' as correct credentials</div>

 <form wicket:id="form">

 <fieldset>

 Username: <input type="text" wicket:id="username"/>

 Password: <input type="password" wicket:id="password"/>

 <input type="submit"/>

 </fieldset>

 </form>

 <div wicket:id="feedbackPanel"></div>

 </body>

</html>

Java code:

public class HomePage extends WebPage {

 private Label sessionType;

 private String password;

 private String username;

 public HomePage(final PageParameters parameters) {

 StatelessForm form = new StatelessForm("form"){
 @Override

 protected void onSubmit() {

 //sign in if username and password are “user”

 if("user".equals(username) && username.equals(password))

 info("Username and password are correct!");

 else

 error("Wrong username or password");

 }

 };

 form.add(new PasswordTextField("password"));

 form.add(new TextField("username"));

 add(form.setDefaultModel(new CompoundPropertyModel(this)));

 add(sessionType = new Label("sessionType", Model.of("")));

Wicket free user guide 101

10 Wicket forms in detail

 add(new FeedbackPanel("feedbackPanel"));

 }

 @Override

 protected void onBeforeRender() {

 super.onBeforeRender();

 if(getSession().isTemporary())

 sessionType.setDefaultModelObject("temporary");

 else

 sessionType.setDefaultModelObject("permanent");

 }

}

Label sessionType shows if current session is temporary or not and is set inside onBeforeRender():
if our page is really stateless the session will be always temporary. We have also inserted a feedback
panel in the home page that shows if the credentials are correct. This was done to make the example
form more interactive.

10.10 Working with radio buttons and checkboxes
In this paragraph we will see which components can be used to handle HTML radio buttons and

checkboxes. Both these input elements are usually grouped together to display a list of possible
choices:

A check box can be also used as single component to set a boolean property. For this purpose Wicket
provides component org.apache.wicket.markup.html.form.CheckBox which must be attached
to tag <input type="checkbox".../>. In the next example (project SingleCheckBox) we will consider a
form similar to the one used in paragraph 9.5 to edit a Person object, but with an additional checkbox to
let user decide if she wants to subscribe to our mailing list or not. The form uses the following bean as
backing object:

public class RegistrationInfo implements Serializable {

private String name;

private String surname;

private String address;

private String email;

private boolean subscribeList;

/*Getters and setters*/

}

The markup and the code for this example are the following:

Form's markup:

Wicket free user guide 102

10 Wicket forms in detail

<form wicket:id="form">

<div style="display: table;">

<div style="display: table-row;">

<div style="display: table-cell;">Name: </div>

<div style="display: table-cell;">

<input type="text" wicket:id="name"/>

</div>

</div>

<div style="display: table-row;">

<div style="display: table-cell;">Surname: </div>

<div style="display: table-cell;">

<input type="text" wicket:id="surname"/>

</div>

</div>

<div style="display: table-row;">

<div style="display: table-cell;">Address: </div>

<div style="display: table-cell;">

<input type="text" wicket:id="address"/>

</div>

</div>

<div style="display: table-row;">

<div style="display: table-cell;">Email: </div>

<div style="display: table-cell;">

<input type="text" wicket:id="email"/>

</div>

</div>

<div style="display: table-row;">

<div style="display: table-cell;">Subscribe list:</div>

<div style="display: table-cell;">

<input type="checkbox" wicket:id="subscribeList"/>

</div>

</div>

</div>

<input type="submit" value="Save"/>

</form>

Page constructor:

public HomePage(final PageParameters parameters) {

 RegistrationInfo registrtionInfo = new RegistrationInfo();

 registrtionInfo.setSubscribeList(true);

 Form form = new Form("form",

 new CompoundPropertyModel<RegistrationInfo>(registrtionInfo));

 form.add(new TextField("name"));

form.add(new TextField("surname"));

form.add(new TextField("address"));

form.add(new TextField("email"));

form.add(new CheckBox("subscribeList"));

add(form);

Wicket free user guide 103

10 Wicket forms in detail

}

Please note that the checkbox will be initially selected because we have set to true the subscribe flag
during model object creation (with instruction registrtionInfo.setSubscribeList(true)):

10.10.1 Working with grouped checkboxes

When we need to display a given number of options with checkboxes, we can use component
org.apache.wicket.markup.html.form.CheckBoxMultipleChoice. For example, If our
options are a list of strings, we can display them in this way:

Html:

<div wicket:id="checkGroup">

<input type="checkbox"/>It will be replaced by the actual checkboxes...

</div>

Java code:

List<String> fruits = Arrays.asList("apple", "strawberry", "watermelon");

form.add(new CheckBoxMultipleChoice("checkGroup", new ListModel<String>(new

 ArrayList<String>()), fruits));

Screenshot of generated page:

The component can be attached to a <div> tag or to a tag. No specific content is required for
this tag as it will be populated with the actual checkboxes. Since this component allows multiple
selection, its model object is a list. In the example above we have used model org.apache.
wicket.model.util.ListModel which is specifically designed to wrap a List object.

By default CheckBoxMultipleChoice inserts a
 tag as suffix after each option. We can
configure both the suffix and the prefix used by the component with methods setPrefix and
setSuffix.

When our options are more complex objects than simple strings, we can render them using an

Wicket free user guide 104

10 Wicket forms in detail

IChoiceRender, as we did for DropDownChoice in paragraph 9.4:

Html:

<div wicket:id="checkGroup">

<input type="checkbox"/>It will be replaced by actual checkboxes...

</div>

Java code:

Person john = new Person("John", "Smith");

Person bob = new Person("Bob", "Smith");

Person jill = new Person("Jill", "Smith");

List<Person> theSmiths = Arrays.asList(john, bob, jill);

ChoiceRenderer render = new ChoiceRenderer("name");

form.add(new CheckBoxMultipleChoice("checkGroup", new ListModel<String>(ArrayList<String>()),

 theSmiths, render));

Screenshot of generated page:

10.10.2 How to implement a “Select all” checkbox

A nice feature we can offer to users when we have a group of checkboxes is a “special” checkbox
which selects/unselects all the other options of the group:

Wicket comes with a couple of utility components that make easy to implement such a feature. They
are classes CheckboxMultipleChoiceSelector and CheckBoxSelector, both inside package
org.apache.wicket.markup.html.form. The difference between these two components is that
the first works with an instance of CheckBoxMultipleChoice while the second takes in input a list of
CheckBox objects:

CheckboxMultipleChoiceSelector usage:

CheckBoxMultipleChoice checkGroup;

//checkGroup initialization...

CheckboxMultipleChoiceSelector cbmcs = new CheckboxMultipleChoiceSelector("id", checkGroup);

CheckBoxSelector usage:

CheckBox checkBox1, checkBox2, checkBox3;

//checks initialization...

CheckBoxSelector cbmcs = new CheckBoxSelector("id", checkBox1, checkBox2, checkBox3);

Wicket free user guide 105

10 Wicket forms in detail

10.10.3 Working with grouped radio buttons

For groups of radio buttons we can use component org.apache.wicket.markup.html.form
.RadioChoice which works in much the same way as CheckBoxMultipleChoice:

Html:

<div wicket:id="radioGroup">

<input type="radio"/>It will be replaced by actual radio buttons...

</div>

Java code:

List<String> fruits = Arrays.asList("apple", "strawberry", "watermelon");

form.add(new RadioChoice("radioGroup", Model.of(""), fruits));

Screenshot of generated page:

Wicket free user guide 106

10 Wicket forms in detail

Just like CheckBoxMultipleChoice, this component provides methods setPrefix and
setSuffix to configure the prefix and suffix for our options and it supports IChoiceRender as well. In
addition, RadioChoice provides method wantOnSelectionChangedNotifications() to notify
server when the selected option changes (this is the same method seen for DropDownChoice in
paragraph 9.4).

10.11 Selecting multiple values with ListMultipleChoices and Palette
Checkboxes work well when we have a small amount of options to display, but they quickly become

chaotic as the number of options increases. To overcome this limit we can use <select> tag switching it
to multiple-choice mode with attribute multiple="multiple":

Now user can select multiple options by holding down Ctrl key (or Command key for Mac) and clicking
on them.

To work with multiple choice list Wicket provides component org.apache.wicket.markup.html.
form.ListMultipleChoice:

Html:

<select wicket:id="fruits">

<option>choice 1</option>

<option>choice 2</option>

</select>

Java code:

List<String> fruits = Arrays.asList("apple", "strawberry", "watermelon");

form.add(new ListMultipleChoice("fruits", new ListModel<String>(new ArrayList<String>()),

 fruits));

Screenshot of generated page:

Wicket free user guide 107

10 Wicket forms in detail

The component must be bound to a <select> tag but the attribute multiple="multiple" is not required
as it will be automatically added by the component.

The number of visible rows can be set with method setMaxRows(int maxRows).

10.11.1 Component Palette

While multiple choice list solves the problem of handling a big number of multiple choices, it is not
much intuitive for end users. That's why desktop GUIs have introduced a more complex component
which can be generally referred to as multi select transfer component (it doesn't have an actual official
name):

Wicket free user guide 108

10 Wicket forms in detail

This kind of component is composed by two multiple-choice lists, one on the left displaying the
available options and the other one on the right displaying the selected options. User can move options
from a list to another by double clicking on them or using the buttons placed between the two list.

Built-in component org.apache.wicket.extensions.markup.html.form.palette.Palette
provides an out-of-the-box implementation of a multi select transfer component. It works in a similar way
to ListMultipleChoice:

Html:

<div wicket:id="palette">

 Select will be replaced by the actual content...

 <select multiple="multiple">

 <option>option1</option>

 <option>option2</option>

 <option>option3</option>

</div>

Java code:

Person john = new Person("John", "Smith");

Person bob = new Person("Bob", "Smith");

Person jill = new Person("Jill", "Smith");

Person andrea = new Person("Andrea", "Smith");

List<Person> theSmiths = Arrays.asList(john, bob, jill, andrea);

ChoiceRenderer render = new ChoiceRenderer("name");

form.add(new Palette("palette", Model.of(new ArrayList<String>()), new ListModel<String>
(theSmiths), render, 5, true));

Screenshot of generated page:

Wicket free user guide 109

Illustration 10.3: An example of multi select transfer component
from Jasper iReport

10 Wicket forms in detail

The last two parameters of Palette's constructor (an integer value and a boolean value) are,
respectively, the number of visible rows for the two lists and a flag to choose if we want to display the
two optional buttons which move selected options up and down. The descriptions of the two lists
(“Available” and “Selected”) can be customized providing two resources with keys palette.available
and palette.selected.

The markup of this component uses a number of CSS classes which can be extended/overriden to
customize the style of the component. We can find these classes and see which tags they decorate in
the default markup file of the component:

<table cellspacing="0" cellpadding="2" class="palette">

<tr>

<td class="header headerAvailable">[available
header]</td>

<td> </td>

<td class="header headerSelected">[selected
header]

 </td>

</tr>

<tr>

<td class="pane choices">

<select wicket:id="choices" class="choicesSelect">[choices]</select>

</td>

<td class="buttons">

<button type="button" wicket:id="addButton" class="button add"><div/>

 </button>

<button type="button" wicket:id="removeButton" class="button remove"><div/>

 </button>

<button type="button" wicket:id="moveUpButton" class="button up"><div/>

 </button>

<button type="button" wicket:id="moveDownButton" class="button down"><div/>

 </button>

</td>

<td class="pane selection">

<select class="selectionSelect" wicket:id="selection">[selection]</select>

</td>

</tr>

</table>

10.12 Summary
Forms are the standard solution to let users interact with our applications. In this chapter we have seen

the three steps involved into form processing in Wicket. We have started looking at form validation and

Wicket free user guide 110

10 Wicket forms in detail

feedback messages generation, then we have seen how Wicket converts input values into Java objects
and vice versa.

In the second part of the chapter we have learnt how to build reusable form components and how to
implement a stateless form. We have ended the chapter with an overview of the built-in form
components needed to handle standard input form elements like checkboxes, radio buttons and multiple
selections lists.

Wicket free user guide 111

11 Displaying multiple items with repeaters

11 Displaying multiple items with
repeaters

A common task for web applications is to display a set of items. The most typical scenario where we
need such kind of visualization is when we have to display some kind of search result. With the old
template-based technologies (like JSP) we used to accomplish this task using classic for or while
loops:

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Insert title here</title>

</head>

<body>

 <%

 for(int i = 12; i<=32; i++) {

 %>

 <div>Hello! I'm index n°<%= %></div>

 <%

 }

 %>

</body>

To ease this task Wicket provides a number of special-purpose components called repeaters which are
designed to use their related markup to display the items of a given set in a more natural and less
chaotic way.

In this chapter we will see some of the built-in repeaters that come with Wicket.

11.1 Component RepeatingView
Component org.apache.wicket.markup.repeater.RepeatingView is a container which

renders its children components using the tag it is bound to. It can contain an arbitrary number of
children elements and we can obtain a new valid id for a new child calling its method newChildId().
This component is particularly suited when we have to repeat a simple markup fragment, for example
when we want to display some items as a HTML list:

Html:

 <li wicket:id="listItems">

Java code:
RepeatingView listItems = new RepeatingView("listItems");

listItems.add(new Label(listItems.newChildId(), "green");

listItems.add(new Label(listItems.newChildId(), "blue");

listItems.add(new Label(listItems.newChildId(), "red");

Wicket free user guide 112

11 Displaying multiple items with repeaters

Generated markup:

 green

 blue

 red

As we can see in this example, each child component has been rendered using the parent markup as if
it was its own.

11.2 Component ListView
As its name suggests, component org.apache.wicket.markup.html.list.ListView is

designed to display a given list of objects which can be provided as a standard Java List or as a model
containing the concrete List. ListView iterates over the list and creates a child component of class
org.apache.wicket.markup.html.list.ListItem for every encountered item.

Unlike RepeatingView this component is intended to be used with complex markup fragments
containing nested components.

To generate its children, ListView calls its abstract method populateItem(ListItem<T> item)
for each item in the list, so we must provide an implementation of this method to tell the component how
to create its children components. In the following example we use a ListView to display a list of
Person objects:

Html:

...

<body>

<div id="bd" style="display: table;">

<div wicket:id="persons" style="display: table-row;">

<div style="display: table-cell;">Full name: </div>

<div wicket:id="fullName" style="display: table-cell;"></div>

</div>

</div>

</body>

...

Java code (page constructor):

public HomePage(final PageParameters parameters) {

 List<Person> persons = Arrays.asList(new Person("John", "Smith"),

 new Person("Dan", "Wong"));

 add(new ListView<Person>("persons", persons) {

@Override

protected void populateItem(ListItem<Person> item) {

 item.add(new Label("fullName", new PropertyModel(item.getModel(), "fullName")));

}

 });

}

Screenshot of generated page:

Wicket free user guide 113

11 Displaying multiple items with repeaters

In this example we have displayed the full name of two Person's instances. The most interesting part
of the code is the implementation of method populateItem where parameter item is the current child
component created by ListView and its model contains the corresponding element of the list. Please
note that inside populateItem we must add nested components to item object and not directly to the
ListView.

11.2.1 ListView and Form

By default ListView replaces its children components with new instances every time is rendered.
Unfortunately this behavior is a problem if ListView is inside a form and it contains form components.
The problem is caused by the fact that children components are replaced by new ones before form is
rendered, hence they can't keep their input value if validation fails and, furthermore, their feedback
messages can not be displayed.

To avoid this kind of problem we can force ListView to reuse its children components using its
method setReuseItems and passing true as parameter. If for any reason we need to refresh children
components after we have invoked setReuseItems(true), we can use MarkupContainer's
method removeAll() to force ListView to rebuild them.

11.3 Component RefreshingView
Component org.apache.wicket.markup.repeater.RefreshingView is a subclass of
RepeatingView that comes with a customizable rendering strategy for its children components.
RefreshingView defines abstract methods populateItem(Item) and getItemModels(). The

first method is similar to the namesake method seen for ListView, but it takes in input an instance of
class org.apache.wicket.markup.repeater.Item which is a subclass of ListItem.
RefreshingView is designed to display a collection of models containing the actual items. An iterator
over these models is returned by the other abstract method getItemModels.

The following code is a version of the previous example that uses RefreshingView in place of
ListView:

Html:

...

<body>

<div id="bd" style="display: table;">

<div wicket:id="persons" style="display: table-row;">

Wicket free user guide 114

11 Displaying multiple items with repeaters

<div style="display: table-cell;">Full name: </div>

<div wicket:id="fullName" style="display: table-cell;"></div>

</div>

</div>

</body>

...

Java code (page constructor):

public HomePage(final PageParameters parameters) {

 //define the list of models to use

 final List<IModel<Person>> persons = new ArrayList<IModel<Person>>();

 persons.add(Model.of(new Person("John", "Smith"));

 persons.add(Model.of(new Person("Dan", "Wong"));

 add(new RefreshingView<Person>("persons") {

@Override

protected void populateItem(Item<Person> item) {

 item.add(new Label("fullName", new PropertyModel(item.getModel(), "fullName")));

}

@Override

protected Iterator<IModel<Person>> getItemModels() {

 return persons.iterator();

}

 });

}

11.3.1 Item reuse strategy

By default, just like ListView, RefreshingView replaces its children with new instances every time
is rendered. The strategy that decides if and how children components must be refreshed is returned by
method getItemReuseStrategy. This strategy is an implementation of interface
IItemReuseStrategy. The default implementation used by RefreshingView is class
DefaultItemReuseStrategy but Wicket provides also strategy ReuseIfModelsEqualStrategy
which reuses an item if its model has been returned by the iterator obtained with method
getItemModels.

To set a custom strategy we must use method setItemReuseStrategy.

11.4 Pageable repeaters
Wicket offers a number of components that should be used when we have to display a big number of

items (for example the results of a select SQL query).
All these components implements interface org.apache.wicket.markup.html.navigation.
paging.IPageable and use interface IDataProvider (placed in package org.apache.wicket.
markup.repeater.data) as data source. This interface is designed to support data paging. We will
see an example of data paging later in paragraph 11.4.2.

The methods defined by IDataProvider are the following:
• iterator(long first, long count): returns an iterator over a subset of the entire dataset. The

subset starts from the item at position first and includes all the next count items (i.e. it's the
closed interval [first,first+count]).

• size(): gets the size of the entire dataset.
• model(T object): this method is used to wrap an item returned by the iterator with a model. This

Wicket free user guide 115

11 Displaying multiple items with repeaters

can be necessary if, for example, we need to wrap items with a detachable model to prevent
them from being serialized.

Wicket already provides implementations of IDataProvider to work with a List as data source
(ListDataProvider) and to support data sorting (SortableDataProvider).

11.4.1 Component DataView

Class org.apache.wicket.markup.repeater.data.DataView is the simplest pageable
repeater shipped with Wicket. DataView comes with abstract method populateItem(Item) that
must be implemented to configure children components. In the following example we use a DataView
to display a list of Person objects in a HTML table:

Html:

<table>

<tr>

 <th>Name</th><th>Surename</th><th>Address</th><th>Email</th>

</tr>

<tr wicket:id="rows">

 <td wicket:id="dataRow"></td>

</tr>

</table>

Java code:

//method loadPersons is defined elsewhere

List<Person> persons = loadPersons();

ListDataProvider<Person> listDataProvider = new ListDataProvider<Person>(persons);

DataView<Person> dataView = new DataView<Person>("row", listDataProvider) {

 @Override

 protected void populateItem(Item<Person> item) {

 Person person = item.getModelObject();

 RepeatingView repeatingView = new RepeatingView("dataRow");

 repeatingView.add(new Label(repeatingView.newChildId(), person.getName()));

 repeatingView.add(new Label(repeatingView.newChildId(), person.getSurename()));

 repeatingView.add(new Label(repeatingView.newChildId(), person.getAddress()));

 repeatingView.add(new Label(repeatingView.newChildId(), person.getEmail()));

 item.add(repeatingView);

 }

};

add(dataView);

Please note that in the code above we have used also a RepeatingView component to populate the
rows of the table.

In the next paragraph we will see a similar example that adds support for data paging.

11.4.2 Data paging

To enable data paging on a pageable repeaters, we must first set the number of items to display per
page with method setItemsPerPage(long items). Then, we must attach the repeater to panel
PagingNavigator (placed in package org.apache.wicket.markup.html.navigation

Wicket free user guide 116

11 Displaying multiple items with repeaters

.paging) which is responsible for rendering a navigation bar containing the links illustrated in the
following picture:

Project PageDataViewExample mixes a DataView component with a PagingNavigator to display
the list of all countries of the world sorted by alphabetical order37. Here is the initialization code of the
project home page:

Html:

<table>

 <tr>

 <th>ISO 3166-1</th><th>Name</th><th>Long name</th><th>Capital</th><th>Population</th>

 </tr>

 <tr wicket:id="rows">

 <td wicket:id="dataRow"></td>

 </tr>

</table>

Java code:

public HomePage(final PageParameters parameters) {

 super(parameters);

 //method loadCountriesFromCsv is defined elsewhere in the class.

 //It reads countries data from a csv file and returns each row as an array of Strings.

 List<String[]> countries = loadCountriesFromCsv();

 ListDataProvider<String[]> listDataProvider = new ListDataProvider<String[]>(countries);

 DataView<String[]> dataView = new DataView<String[]>("rows", listDataProvider) {

 @Override

 protected void populateItem(Item<String[]> item) {

 String[] countriesArr = item.getModelObject();

 RepeatingView repeatingView = new RepeatingView("dataRow");

 for (int i = 0; i < countriesArr.length; i++){

 repeatingView.add(new Label(repeatingView.newChildId(), countriesArr[i]));

 }

 item.add(repeatingView);

 }

 };

 dataView.setItemsPerPage(15);

 add(dataView);

 add(new PagingNavigator("pagingNavigator", dataView));

}

The data of a single country (ISO code, name, long name, capital and population) are handled with an
array of strings. The usage of PagingNavigator it's quite straightforward as we need to simply pass
the pageable repeater to its constructor.

To explore the other pageable repeaters shipped with Wicket you can visit the page at

37 The list of countries is read from a csv file downloaded from http://opengeocode.org/download/cow.php

Wicket free user guide 117

http://opengeocode.org/download/cow.php
http://opengeocode.org/download/cow.php

11 Displaying multiple items with repeaters

http://www.wicket-library.com/wicket-examples/repeater/ where you can find live examples of these
components.

Note

Wicket provides also component PageableListView which is a sublcass of
ListView that implements interface IPageable, hence it can be considered a
pageable repeaters even if it doesn't use interface IDataProvider as data
source.

11.5 Summary
In this chapter we have explored the built-in set of components called repeaters which are designed to

repeat their own markup in output to display a set of items. We have started with component
RepeatingView which can be used to repeat a simple markup fragment.

Then, we have seen components ListView and RefreshingView which should be used when the
markup to repeat contains nested components to populate.

Finally, we have discussed those repeaters that support data paging and that are called pageable
repeaters. We ended the chapter looking at an example where a pageable repeater is used with panel
PagingNavigator to make its dataset navigable by user.

Wicket free user guide 118

http://www.wicket-library.com/wicket-examples/repeater/

12 Internationalization with Wicket

12 Internationalization with
Wicket

In chapter 10 we have seen how the topic of localization is involved in the generation of feedback
messages and we had a first contact with resource bundles.

In this chapter we will continue to explore the localization support provided by Wicket and we will learn
how to build pages and components ready to be localized in different languages.

12.1 Localization
As we have seen in chapter 10, the infrastructure of feedback messages is built on top of Java

internationalization (i18n) support, so it should not be surprising that the same infrastructure is used also
for localization purpose.

However, while so far we have used only the <ApplicationClassName>.properties file to store our
custom messages, in this chapter we will see that also pages, components, validators and even Java
packages can have their own resource bundles. This allows us to split bundles into multiple files keeping
them close to where they are used.

But before diving into the details of internationalization with Wicket, it's worthwhile to quickly review
how i18n works under Java, see what classes are involved and how they are integrated into Wicket.

 Note

Providing a full description of Java support for i18n is clearly out of the scope of
this document. If you need more informations about this topic you can find them
in the JavaDocs and in the official i18n tutorial38.

12.2 Class Locale and ResourceBundle
Class java.util.Locale represents a specific country or language of the world and is used in Java

to retrieve other locale-dependent informations like numeric and date formats, the currency in use in a
country and so on. Such kind of informations are accessed through special entities called resource
bundles which are implemented by class java.util.ResourceBundle.

Every resource bundle is identified by a full name which is built using four parameters: a base name
(which is required), a language code, a country code and a variant (which are all optional). These three
optional parameters are provided by an instance of Locale with its three corresponding getter methods:
getLanguage(), getCountry() and getVariant(). Parameter language code is a lowercase ISO
639 2-letter code (like zh for Chinese, de for German and so on) while country code is an uppercase
ISO 3166 2-letter code (like CN for China, DE for Germany and so on).

The final full name will have the following structure (NOTE: tokens inside squared brackets are
optional):

<base name>[_<language code>[_<COUNTRY_CODE>[_<variant code>]]]

For example a bundle with MyBundle as base name and localized for Mandarin Chinese (language
code zh, country code CH, variant cmn) will have MyBundle_zh_CH_cmn as full name.

38 http://docs.oracle.com/javase/tutorial/i18n/index.html

Wicket free user guide 119

http://docs.oracle.com/javase/tutorial/i18n/index.html

12 Internationalization with Wicket

A base name can be a fully qualified class name, meaning that it can include a package name before
the actual base name. The specified package will be the container of the given bundle. For example if
we use org.foo.MyBundle as base name, the bundle named MyBundle will be searched inside
package org.foo. The actual base name (MyBundle in our example) will be used to build the full
name of the bundle following the same rules seen above.
ResourceBundle is an abstract factory class, hence it exposes a number of factory methods named
getBundle to load a concrete bundle. Without going into too much details we can say that a bundle
corresponds to a file in the classpath. To find a file for a given bundle, getBundle needs first to
generate an ordered list of candidate bundle names. These names are the set of all possible full names
for a given bundle. For example if we have org.foo.MyBundle as base name and the current locale
is the one seen before for Mandarin Chinese, the candidate names will be:

1. org.foo.MyBundle_zh_CH_cmn
2. org.foo.MyBundle_zh_CH
3. org.foo.MyBundle_zh
4. org.foo.MyBundle

The list of these candidate names is generated starting from the most specific one and subtracting an
optional parameter at each step. The last name of the list corresponds to the default resource bundle
which is the most general name and is equal to the base name.

Once that getBundle has generated the list of candidate names, it will iterate over them to find the
first one for which is possible to load a class or a properties file. The class must be a subclass of
ResourceBundle having as class name the full name used in the current iteration. If such a class is
not found, getBundle will try to locate a properties file having a file name equals to the current full
name (Java will automatically append extension .properties to the full name).

For example given the resource bundle of the previous example, Java will search first for class
org.foo.MyBundle_zh_CH_cmn and then for file MyBundle_zh_CH_cmn.properties inside
package org.foo. If no file is found for any of the candidate names, a MissingResourceException
will be thrown.

Bundles contains local-dependent string resources identified by a key that is unique in the given
bundle. So once we have obtained a valid bundle we can access these objects with method getString
(String key).

As we have seen before working with feedback messages, in Wicket most of the times we will work
with properties files rather than with bundle classes. In chapter 10 we used a properties file having as
base name the class name of the application class and without any information about the locale. This
file is the default resource bundle for a Wicket application. In paragraph 12.4 we will explore the
algorithm used in Wicket to locate the available bundles for a given component. Once we have learnt
how to leverage this algorithm, we will be able to split our bundles into more files organized in a logical
hierarchy.

12.3 Localization in Wicket
A component can get the current locale in use calling its method getLocale(). By default this

method will be recursively called on component's parent containers until one of them returns a valid
locale. If no one of them returns a locale, this method will get the one associated with the current user
session. This locale is automatically generated by Wicket in accordance with the language settings of
the browser.

Developers can change the locale of the current session with Session's method setLocale
(Locale locale):

Session.get().setLocale(locale)

Wicket free user guide 120

12 Internationalization with Wicket

12.3.1 Style and variation parameters for bundles

In addition to locale's informations, Wicket supports two further parameters to identify a resource
bundle: style and variation. Parameter style is a string value and is defined at session-level. To set/get
the style for the current session we can use the corresponding setter and getter of class Session:

Session.get().setStyle("myStyle");

Session.get().getStyle();

If set, style's value contributes to the final full name of the bundle and it is placed between the base
name and the locale's informations:

<base name>[_style][_<language code>[_<COUNTRY_CODE>[_<variant code>]]]

Wicket gives the priority to candidate names containing the style information (if available).
The other parameter we can use for localization is variation. Just like style also variation is a string

value, but it is defined at component-level. The value of variation is returned by Component's method
getVariation(). By default this method returns the variation of the parent component or a null
value if a component hasn't a parent (i.e. it's a page). If we want to customize this parameter we must
overwrite method getVariation and make it return the desired value.

Variation's value contributes to the final full name of the bundle and is placed before style parameter:

<base name>[_variation][_style][_<language code>[_<COUNTRY_CODE>[_<variant code>]]]

12.3.2 Using XML files as resource bundles

Java uses the standard character set ISO 8859-139 to encode text files like properties files.
Unfortunately ISO 8859-1 does not support most of the extra-European languages like Chinese or
Japanese. The only way to use properties files with such languages is to use escaped Unicode
characters40, but this leads to not human-readable files. For example if we wanted to write the word

'website' in simplified Chinese (the ideograms are 网站) we should write the Unicode characters

\u7F51\u7AD9.
That's why starting from version 1.5, Java introduced the support for XML files as resource bundles.

XML files are generally encoded with character sets UTF-8 or UTF-16 which support every symbol of
the Unicode standard.

In order to be a valid resource bundle the XML file must conform to the DTD available at
http://java.sun.com/dtd/properties.dtd.

Here is an example of XML resource bundle taken from project LocalizedGreetings (file
WicketApplication_zh.properties.xml) containing the translation in simplified Chinese of the
greeting message “Welcome to the website!”:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>

<entry key="greetingMessage">欢迎光临本网站！</entry>

</properties>

To use XML bundles in Wicket we don't need to put in place any additional configuration. The only rule
we have to respect with these files is to use properties.xml as extension while their base name

39 http://en.wikipedia.org/wiki/ISO/IEC_8859-1
40 http://en.wikipedia.org/wiki/List_of_Unicode_characters

Wicket free user guide 121

http://java.sun.com/dtd/properties.dtd
http://en.wikipedia.org/wiki/List_of_Unicode_characters
http://en.wikipedia.org/wiki/ISO/IEC_8859-1

12 Internationalization with Wicket

follows the same rules seen so far for bundle names.

12.3.3 Reading bundles from code

Class Component makes reading bundles very easy with method getString(String key). This
method searches for a resource with the given key looking into the resource bundles visited by the
lookup algorithm illustrated in paragraph 12.4.

For example if we have a greeting message with key greetingMessage in our application's resource
bundle, we can read it from our component code with this instruction:

getString("greetingMessage");

12.3.4 Localization of bundles in Wicket.

In chapter 10 we have used as resource bundle the properties file placed next to our application class.
This file is the default resource bundle for the entire application and it is used by the lookup algorithm if it
doesn't find any better match for a given component and locale.

If we want to provide localized versions of this file we must simply follow the rules of Java i18n and put
our translated resources into another properties file with a name corresponding to the desired locale.

For example project LocalizedGreetings comes with the default application's properties file (
WicketApplication.properties) containing a greeting message:

greetingMessage=Welcome to the site!

Along with this file we can also find a bundle for German (WicketApplication_de.properties)
and another one in XML format for simplified Chinese (WicketApplication_zh.properties.xml).

The example project consists of a single page (HomePage.java) displaying the greeting message.
The current locale can be changed with a drop-down list and the possible options are English (the
default one), German and simplified Chinese:

The label displaying the greeting message has a custom read-only model which returns the message
with method getString. The initialization code for this label is this:

AbstractReadOnlyModel<String> model = new AbstractReadOnlyModel<String>() {

@Override

public String getObject() {

return getString("greetingMessage");

}

};

add(new Label("greetingMessage", model));

Wicket free user guide 122

Illustration 12.1: The home page of project LocalizedGreetings
localized in German

12 Internationalization with Wicket

Class org.apache.wicket.model.AbstractReadOnlyModel is a convenience class for
implementing read-only models. In this project we have implemented a custom read-only model for
illustrative purposes only because Wicket already provides built-in models for the same task. We will
see them in paragraph 12.6.

The rest of the code of the home page builds the stateless form and the drop-down menu used to
change the locale.

List<Locale> locales = Arrays.asList(Locale.ENGLISH, Locale.CHINESE, Locale.GERMAN);

final DropDownChoice<Locale> changeLocale =

 new DropDownChoice<Locale>("changeLocale", new Model<Locale>(), locales);

StatelessForm form = new StatelessForm("form"){

@Override

protected void onSubmit() {

Session.get().setLocale(changeLocale.getModelObject());

}

};

setStatelessHint(true);

add(form.add(changeLocale))

12.3.5 Localization of markup files

Although resource bundles exist to extract local-dependent elements from our code and from UI
components, in Wicket we can decide to provide different markup files for different locale settings. Just
like standard markup files, by default localized markup files must be placed next to component's class
and their file name must contain the locale's informations. In the following picture, CustomPanel comes
with a standard (or default) markup file and with another one localized for German:

When the current locale corresponds to German country (language code de), markup file
CustomPanel_de.html will be used in place of the default one.

12.3.6 Reading bundles with tag <wicket:message>

String resources can be also retrieved directly from markup code using tag <wicket:message>. The key
of the desired resource is specified with attribute key:

<wicket:message key="greetingMessage">message goes here</wicket:message>

wicket:message can be adopted also to localize the attributes of a tag. The name of the attribute and
the resource key are expressed as a colon-separated value. In the following markup the content of
attribute value will be replaced with the localized resource having 'key4value' as key:

Wicket free user guide 123

Illustration 12.2: Component with markup
localized in German

12 Internationalization with Wicket

<input type="submit" value="Preview value" wicket:message="value:key4value"/>

If we want to specify multiple attributes at once, we can separate them with a coma:

<input type="submit" value="Preview value" wicket:message="value:key4value,title:key4title"/>

12.4 Bundles lookup algorithm
As we hinted at the beginning of this chapter, by default Wicket provides a very flexible algorithm to

locate the resource bundles available for a given component. In this paragraph we will learn how this
default lookup algorithm works and which options it offers to manage our bundle files.

12.4.1 Localizing pages and panels

Similarly to application class, also component classes can have their own bundle files having as base
name the class name of the related component and placed in the same package. So for example if class
CustomPanel is a custom panel we created, we can provide it with a default bundle file called
CustomPanel.properties containing the textual resources used by this panel. This rule applies to
page classes as well:

One fundamental thing to keep in mind when we work with these kinds of bundles is that the lookup
algorithm gives priority to the bundles of the containers of the component that is requesting a localized
resource. The more a container is higher in the hierarchy, the bigger is its priority over the other
components. This mechanism was made to allow containers to overwrite resources used by children
components. As a consequence the values inside the resource bundle of a page will have the priority
over the other values with the same key defined in the bundles of children components.

To better grasp this concept let's consider the component hierarchy depicted in the following picture:

Wicket free user guide 124

Illustration 12.3: Page and panel with their own bundle

Illustration 12.4: The bundle of CustomPanel is overwritten by the one of CustomPage.

12 Internationalization with Wicket

If CustomPanel tries to retrieve the string resource having 'message' as key, it will get the value
'Wellcome!' and not the one defined inside its own bundle file.

The default message-lookup algorithm is not limited to component hierarchy but it also includes the
class hierarchy of every component visited in the search strategy described so far. This makes bundle
files inheritable, just like markup files. When the hierarchy of a container component is explored, any
ancestor has the priority over children components. Consider for example the hierarchy in the following
picture:

Similarly to the previous example, the bundle owned by CustomPanel is overwritten by the bundle of
page class BasePage (which has been inherited by CustomPage).

12.4.2 Component-specific resources

In order to make a resource specific for a given child component, we can prefix the message key with
the id of the desired component. Consider for example the following code and bundle of a generic page:

Page code:

add(new Label("label",new ResourceModel("labelValue")));

add(new Label("anotherLabel",new ResourceModel("labelValue")));

Page bundle:

labelValue=Default value

anotherLabel.labelValue=Value for anotherLabel

Label with id anotherLabel will display the value 'Value for anotherLabel' while label label will display
'Default value'. In a similar fashion, parent containers can specify a resource for a nested child
component prepending also its relative path (the path is dot-separated):

Page code:

Wicket free user guide 125

Illustration 12.5: The bundle of CustomPanel is overwritten by the
one of page class BasePage.

12 Internationalization with Wicket

Form form = new Form("form");

form.add(new Label("anotherLabel",new ResourceModel("labelValue")));

add(form);

Page bundle:

labelValue=Default value

anotherLabel.labelValue=Value for anotherLabel

form.anotherLabel.labelValue=Value for anotherLabel inside form

With the code and the bundle above, the label inside the form will display the value 'Value for
anotherLabel inside form'.

12.4.3 Package bundles

If no one of the previous steps can find a resource for the given key, the algorithm will look for package
bundles. These bundles have package as base name and they can be placed in one of the package of
our application:

Packages are traversed starting from the one containing the component requesting for a resource and
going up to the root package.

12.4.4 Bundles for feedback messages

The algorithm described so far applies to feedback messages as well. In case of validation errors, the
component that has caused the error will be considered as the component which the string resource is
relative to.

Furthermore, just like application class and components, validators can have their own bundles placed
next to their class and having as base name their class name. This allows us to distribute validators
along with the messages they use to report errors:

Wicket free user guide 126

Illustration 12.6: Package bundles in each
package of the application

Illustration 12.7: Validator with its own bundle

12 Internationalization with Wicket

Validator's resource bundles have the lowest priority in the lookup algorithm. They can be overwritten
by resource bundles of components, packages and application class.

12.4.5 Extending the default lookup algorithm

Wicket implements the default lookup algorithm using the strategy pattern41. The concrete strategies
are abstracted with the interface org.apache.wicket.resource.loader.IStringResource
Loader. By default Wicket uses the following implementations of IStringResourceLoader (sorted
by execution order):

1. ComponentStringResourceLoader: implements most of the default algorithm. It searches for
a given resource across bundles from the container hierarchy, from class hierarchy and from the
given component.

2. PackageStringResourceLoader: searches into package bundles.
3. ClassStringResourceLoader: searches into bundles of a given class. By default the target

class is the application class.
4. ValidatorStringResourceLoader: searches for resources into validator's bundles. A list of

validators is provided by the form component that failed validation.
5. InitializerStringResourceLoader: this resource allows internationalization to interact with the

initialization mechanism of the framework that will be illustrated in paragraph 15.4.

Developer can customize lookup algorithm removing default resource loaders or adding custom

implementations to the list of the resource loaders in use. This task can be accomplished using method
getStringResourceLoaders of setting interface org.apache.wicket.settings.
IResourceSettings:

@Override

public void init()

{

 super.init();

 //retrieve IResourceSettings and then the list of resource loaders

 List<IStringResourceLoader> resourceLoaders= getResourceSettings().

 getStringResourceLoaders();

 //customize the list...

12.5 Localization of component's choices
Components that inherit from AbstractChoice (such as DropDownChoice, CheckBoxMultiple
Choice and RadioChoice) must override method localizeDisplayValues and make it return
true to localize the values displayed for their choices. By default this method return false so values
are displayed as they are.

Once localization is activated we can use display values as key for our localized string resources. In
project LocalizedChoicesExample we have a drop-down list that displays four colors (green, red, blue,
and yellow) which are localized in three languages (English, German and Italian). The current locale can
be changed with another drop-down menu (in a similar fashion to project LocalizedGreetings). The code
of the home page and the relative bundles are the following:

Java code:

public HomePage(final PageParameters parameters) {

super(parameters);

41 http://en.wikipedia.org/wiki/Strategy_pattern

Wicket free user guide 127

http://en.wikipedia.org/wiki/Strategy_pattern

12 Internationalization with Wicket

List<Locale> locales = Arrays.asList(Locale.ENGLISH, Locale.ITALIAN, Locale.GERMAN);

List<String> colors = Arrays.asList("green", "red", "blue", "yellow");

final DropDownChoice<Locale> changeLocale = new DropDownChoice<Locale>("changeLocale",

 new Model<Locale>(), locales);

StatelessForm form = new StatelessForm("form"){

@Override

protected void onSubmit() {

Session.get().setLocale(changeLocale.getModelObject());

}

};

DropDownChoice<String> selectColor = new DropDownChoice<String>("selectColor", new

 Model<String>(), colors){

@Override

protected boolean localizeDisplayValues() {

return true;

}

};

form.add(selectColor);

add(form.add(changeLocale));

 }

Default bundle (English):

selectColor.null=Select a color

green=Green

red=Red

blue=Blue

yellow=Yellow

German bundle:

selectColor.null=Wahlen sie eine farbe

green=Grun

red=Rot

blue=Blau

yellow=Gelb

Italian bundle:

selectColor.null=Scegli un colore

green=Verde

red=Rosso

blue=Blu

yellow=Giallo

Along with the localized versions of colors names, in the bundles above we can also find a custom
value for the placeholder text (“Chose one ”) used for null value. The resource key for this resource is
'null' or '<component id>.null' if we want to make it component-specific.

12.6 Internationalization and Models
Internationalization is another good chance to taste the power of models. Wicket provides two built-in

Wicket free user guide 128

12 Internationalization with Wicket

models to better integrate our components with string resources: they are ResourceModel and
StringResourceModel.

12.6.1 ResourceModel

Model org.apache.wicket.model.ResourceModel acts just like the read-only model we have
implemented in paragraph 12.3.4. It simply retrieves a string resource corresponding to a given key:

//build a ResourceModel for key 'greetingMessage'

new ResourceModel("greetingMessage");

We can also specify a default value to use if the requested resource is not found:

//build a ResourceModel with a default value

new ResourceModel("notExistingResource", "Resource not found.");

12.6.2 StringResourceModel

Model org.apache.wicket.model.StringResourceModel allows to work with complex and
dynamic string resources containing parameters and property expressions. The basic constructor of this
model takes in input a resource key and another model. This further model can be used by both the key
and the related resource to specify dynamic values with property expressions.

For example let's say that we are working on an e-commerce site which has a page where users can
see an overview of their orders. To handle the state of user's orders we will use the following bean and
enum (the code is from project StringResourceModelExample):

Bean:

public class Order implements Serializable{

private Date orderDate;

private ORDER_STATUS status;

public Order(Date orderDate, ORDER_STATUS status) {

super();

this.orderDate = orderDate;

this.status = status;

}

//Getters and setters for private fields

}

Enum:

public enum ORDER_STATUS {

PAYMENT_ACCEPTED(0),

IN_PROGRESS(1),

SHIPPING(2),

DELIVERED(3);

private int code;

//Getters and setters for private fields

}

Now what we want to do in this page is to print a simple label which displays the status of an order and
the date on which the order has been submitted. All the informations about the order will be passed to a
StringResourceModel with a model containing the bean Order. The bundle in use contains the

Wicket free user guide 129

12 Internationalization with Wicket

following key/value pairs:

orderStatus.0=Your payment submitted on ${orderDate} has been accepted.

orderStatus.1=Your order submitted on ${orderDate} is in progress.

orderStatus.2=Your order submitted on ${orderDate} has been shipped.

orderStatus.3=Your order submitted on ${orderDate} has been delivered.

The values above contain a property expression (${orderDate}) that will be evaluated on the data
object of the model. The same technique can be applied to the resource key in order to load the right
resource according to the state of the order:

Order order = new Order(new Date(), ORDER_STATUS.IN_PROGRESS);

add(new Label("orderStatus", new StringResourceModel("orderStatus.${status.code}",

 Model.of(order))));

As we can see in the code above also the key contains a property expression (${status.code}) which
makes its value dynamic. In this way the state of an object (an Order in our example) can determinate
which resource will be loaded by StringResourceModel.

If we don't use properties expressions we can provide a null value as model and in this case
StringResourceModel will behave exactly as a ResourceModel.
StringResourceModel supports also the same parameter substitution used by standard class
java.text.MessageFormat. Parameters can be generic objects but if we use a model as parameter,
StringResourceModel will use the data object inside it as actual value (it will call getObject on the
model). Parameters are passed to constructor as a vararg argument. Here is an example of usage of
parameter substitution:

Java code:

PropertyModel propertyModel = new PropertyModel<Order>(order, "orderDate");

//build a string model with two parameters: a property model and an integer value

StringResourceModel srm = new StringResourceModel("orderStatus.delay", null,

 propertyModel, 3);

Bundle:

orderStatus.delay=Your order submitted on ${0} has been delayed by {1} days.

One further parameter we can specify when we build a StringResourceModel is the component
that must be used by the lookup algorithm. Normally this parameter is not relevant, but if we need to use
a particular bundle owned by a component not considered by the algorithm, we can specify this
component as second parameter.

If we pass all possible parameters to StringResourceModel's constructor we obtain something like
this:

new StringResourceModel("myKey", myComponent, myModel, param1, param2, param3,...);

12.7 Summary
Internationalization is a mandatory step if we want to take our applications (and our business!) abroad.

Choosing the right strategy to manage our localized resources is fundamental to avoid to make a mess
of them. In this chapter we have explored the built-in support for localization provided by Wicket, and we

Wicket free user guide 130

12 Internationalization with Wicket

have learnt which solutions it offers to manage resource bundles.
In the final part of the chapter we have seen how to localize the options displayed by a component

(such as DropDownChoice or RadioChoice) and we also introduced two new models specifically
designed to localize our components without introducing in their code any detail about
internationalization.

Wicket free user guide 131

13 Resource management with Wicket

13 Resource management with
Wicket

One of the biggest challenge for a web framework is to offer an efficient and consistent mechanism to
handle internal resources such as CSS/JavaScript files, picture files, pdf and so on. Resources can be
static (like an icon used across the site) or dynamic (they can be generated on the fly) and they can be
made available to users as a download or as a simple URL.

In paragraph 4.6 we have already seen how to add CSS and JavaScript contents to the header section
of the page. In the first half of this chapter we will learn a more sophisticated technique that allows us to
manage static resources directly from code and “pack” them with our custom components.

Then, in the second part of the chapter we will see how to implement custom resources to enrich our
web application with more complex and dynamic functionalities.

13.1 Static vs dynamic resources
In Wicket a resource is an entity that can interact with the current request and response and It must

implement interface org.apache.wicket.request.resource.IResource. This interface defines
just method respond(IResource.Attributes attributes) where the nested class IResource.
Attributes provides access to request, response and page parameters objects.

Resources can be static or dynamic. Static resources don't entail any computational effort to be
generated and they generally correspond to a resource on the filesystem. On the contrary dynamic
resources are generated on the fly when they are requested, following a specific logic coded inside
them.

An example of dynamic resource is the built-in class CaptchaImageResource in package org.
apache.wicket.extensions.markup.html.captcha which generates a captcha image each
time is rendered.

As we will see in paragraph 13.6, developers can build custom resources extending base class
org.apache.wicket.request.resource.AbstractResource.

13.2 Resource references
Most of the times in Wicket we won't directly instantiate a resource but rather we will use a reference to

it. Resource references are represented by abstract class org.apache.wicket.request.resource
.ResourceReference which returns a concrete resource with factory method getResource(). In
this way we can lazy-initialize resources loading them only the first time they are requested.

13.3 Package resources
With HTML we use to include static resources in our pages using tags like <script>, <link> or .

This is what we have done so far writing our custom panels and pages. However, when we work with a
component-oriented framework like Wicket, this classic approach becomes inadequate because it
makes custom components hardly reusable. This happens when a component depends on a big
number of resources. In such a case, if somebody wanted to use our custom component in his
application, he would be forced to know which resources it depends on and make them available.

To solve this problem Wicket allows us to place static resource files into component package (like we
do with markup and properties files) and load them from component code.

These kinds of resources are called package resources:

Wicket free user guide 132

13 Resource management with Wicket

With package resources custom components become independent and self-contained and client code
can use them without worrying about their dependencies.

To load package resources Wicket provides class org.apache.wicket.request.resource.
PackageResourceReference.

To identify a package resource we need to specify a class inside the target package and the name of
the desired resource (most of the times this will be a file name).

In the following example taken from project ImageAsPackageRes, CustomPanel loads a picture file
available as package resource and it displays it in a tag using the built-in component org.
apache.wicket.markup.html.image.Image:

Html:

<html>

<head>...</head>

<body>

<wicket:panel>

Package resource image:

</wicket:panel>

</body>

</html>

Java code:

public class CustomPanel extends Panel {

public CustomPanel(String id) {

super(id);

PackageResourceReference resourceReference =

 new PackageResourceReference(getClass(), "calendar.jpg");

add(new Image("packageResPicture", resourceReference));

}

}

Wicket will take care of generating a valid URL for file calendar.jpg. URLs for package resources have
the following structure:

<path to application root>/wicket/resource/<fully qualified class name>/<resource file name>
-<ver-<id>>[.<file extension>]

In our example the URL for our picture file calendar.jpg is the following:

Wicket free user guide 133

Illustration 13.1: A component with two package
resources (a CSS and a JavaScript file).

13 Resource management with Wicket

./wicket/resource/org.wicketTutorial.CustomPanel/calendar-ver-1297887542000.jpg

The first part of the URL is the relative path to the application root. In our example our page is already

at the application's root so we have only a single-dotted segment. The next two segments, wicket and
resource, are respectively the namespace and the identifier for resources seen in paragraph 8.6.4.

The fourth segment is the fully qualified name of the class used to locate the resource and it is the
scope of the package resource. In the last segment of the URL we can find the name of the resource
(the file name).

As you can see Wicket has automatically appended to the file name a version identifier (ver-
1297887542000). When Wicket runs in DEVELOPMENT mode this identifier contains the timestamp in
millisecond indicating the last time the resource file was modified. This can be useful when we are
developing our application and resource files are frequently modified. Appending the timestamp to the
original name we are sure that our browser will use always the last version of the file and not an old, out
of date, cached version.

When instead Wicket is running in DEPLOYMENT mode, the version identifier will contain the MD5
digest of the file instead of the timestamp. The digest is computed only the first time the resource is
requested. This perfectly makes sense as static resources don't change so often when our application
runs into production environment and when this appends the application is redeployed.

 Note

Package resources can be localized following the same rules seen for resource
bundles and markup files:

In the example illustrated in the picture above, if we try to retrieve package
resource calendar.jpg when the current locale is set to French, the actual file
returned will be calendar_fr.jpg.

13.3.1 Using package resources with tag <wicket:link>

In paragraph 8.3 we have used tag <wicket:link> to automatically create links to bookmarkable pages.
The same technique can be used also for package resources in order to use them directly from markup
file. Let's assume for example that we have a picture file called icon.png placed in the same package of
the current page. Under these conditions we can display the picture file using the following markup
fragment:

<wicket:link>

</wicket:link>

In the example above Wicket will populate the attribute src with the URL corresponding to the package

Wicket free user guide 134

Illustration 13.2: Package resource localized for French
language

13 Resource management with Wicket

resource icon.png. <wicket:link> supports also tag <link> for CSS files and tag <script> for JavaScript
files.

13.4 Adding resources to page header section
Wicket comes with interface org.apache.wicket.markup.html.IHeaderContributor which

allows components and behaviors (which will be introduced later in paragraph 15.1) to contribute to the
header section of their page. The only method defined in this interface is renderHead
(IHeaderResponse response) where IHeaderResponse is an interface which defines method
render(HeaderItem item) to write static resources or free-form text into the header section of the
page.

Header entries are instances of abstract class org.apache.wicket.markup.head.HeaderItem.
Wicket provides a set of built-in implementations of this class suited for the most common types of
resources. With the exception of PriorityHeaderItem, every implementation of HeaderItem is an
abstract factory class:

• CssHeaderItem: represents a CSS resource. Factory methods provided by this class are
forReference which takes in input a resource reference, forUrl which creates an CSS item
from a given URL and forCSS which takes in input an arbitrary CSS string and an optional id
value to identify the resource.

• JavaScriptHeaderItem: represents a JavaScript resource. Just like CssHeaderItem it
provides factory methods forReference and forUrl along with method forScript which
takes in input an arbitrary string representing the script and an optional id value to identify the
resource.

• OnDomReadyHeaderItem: it adds JavaScript code that will be executed after the DOM has
been built, but before external files (such as picture, CSS, etc...) have been loaded. The class
provides a factory method forScript which takes in input an arbitrary string representing the
script to execute.

• OnEventHeaderItem: the JavaScript code added with this class is executed when a specific
JavaScript event is triggered on a given DOM element. The factory method is
forScript(String target, String event, CharSequence javaScript), where
target is the id of a DOM element, event is the event that must trigger our code and
javaScript is the code to execute.

• OnLoadHeaderItem: the JavaScript code added with this class is executed after the whole
page is loaded, external files included. The factory method is forScript(CharSequence
javaScript).

• PriorityHeaderItem: it wraps another header item and ensures that it will have the priority over
the other items during rendering phase.

• StringHeaderItem: with this class we can add an arbitrary text to the header section. Factory
method is forString(CharSequence string).

In the following example our custom component loads a CSS file as a package resource (placed in the
same package) and it adds it to header section.

Java code:

public class MyComponent extends Component{

@Override

public void renderHead(IHeaderResponse response) {

PackageResourceReference cssFile =

 new PackageResourceReference(this.getClass(), "style.css");

Wicket free user guide 135

13 Resource management with Wicket

CssHeaderItem cssItem = CssHeaderItem.forReference(cssFile);

response.render(cssItem);

}

}

13.5 Resource dependencies
Class ResourceReference allows to specify the resources it depends on overriding method
getDependencies(). The method returns an iterator over the set of HeaderItems that must be
rendered before the resource referenced by ResourceReference can be used. This can be really
helpful when our resources are JavaScript or CSS libraries that in turn depend on other libraries.

For example we can use this method to ensure that a custom reference to JQueryUI library will find
JQuery already loaded in the page:

Url jqueyuiUrl = Url.parse("https://ajax.googleapis.com/ajax/libs/jqueryui/" +

 "1.10.2/jquery-ui.min.js");

UrlResourceReference jqueryuiRef = new UrlResourceReference(jqueyuiUrl){

@Override

public Iterable<? extends HeaderItem> getDependencies() {

Application application = Application.get();

ResourceReference jqueryRef = application.getJavaScriptLibrarySettings().

 getJQueryReference();

return Arrays.asList(JavaScriptHeaderItem.forReference(jqueryRef));

}

};

Please note that in the code above we have built a resource reference using a URL to the desired
library instead of a package resource holding the physical file.

The same method getDependencies() is defined also for class HeaderItem.

13.6 Custom resources
In Wicket the best way to add dynamic functionalities to our application (such as csv export, a pdf

generated on the fly, etc...) is implementing a custom resource. In this paragraph as example of custom
resource we will build a basic RSS feeds generator which can be used to publish feeds on our site
(project CustomResourceMounting). Instead of generating a RSS feed by hand we will use Rome42
framework and its utility classes.

As hinted above in paragraph 13.1, class AbstractResource can be used as base class to
implement new resources. This class defines abstract method newResourceResponse which is
invoked when the resource is requested. The following is the code of our RSS feeds generator:

public class RSSProducerResource extends AbstractResource {

 @Override

 protected ResourceResponse newResourceResponse(Attributes attributes) {

 ResourceResponse resourceResponse = new ResourceResponse();

 resourceResponse.setContentType("text/xml");

 resourceResponse.setTextEncoding("utf-8");

42 http://rometools.org/

Wicket free user guide 136

http://rometools.org/

13 Resource management with Wicket

 resourceResponse.setWriteCallback(new WriteCallback()

 {

 @Override

 public void writeData(Attributes attributes) throws IOException

 {

 OutputStream outputStream = attributes.getResponse().getOutputStream();

 Writer writer = new OutputStreamWriter(outputStream);

 SyndFeedOutput output = new SyndFeedOutput();

 try {

 output.output(getFeed(), writer);

 } catch (FeedException e) {

 throw new WicketRuntimeException("Problems writing feed to response...");

 }

 }

 });

 return resourceResponse;

 }

 // method getFeed()...

}

Method newResourceResponse returns an instance of ResourceResponse representing the
response generated by the custom resource. Since RSS feeds are based on XML, in the code above we
have set the type of the response to text/xml and the text encoding to utf-8.

To specify the content that will be returned by our resource we must also provide an implementation of
inner class WriteCallback which is responsible for writing content data to response's output stream.
In our project we used class SyndFeedOutput from Rome framework to write our feed to response.
Method getFeed() is just an utility method that generates a sample RSS feed (which is an instance of
interface com.sun.syndication.feed.synd.SyndFeed).

Now that we have our custom resource in place, we can use it in the home page of the project. The
easiest way to make a resource available to users is to expose it with link component ResourceLink:

add(new ResourceLink("rssLink", new RSSProducerResource()));

In the next paragraphs we will see how to register a resource at application-level and how to mount it
to an arbitrary URL.

13.7 Mounting resources
Just like pages also resources can be mounted to a specific path. Class WebApplication provides

method mountResource which is almost identical to mountPage seen in paragraph 8.6.1:

@Override

public void init() {

 super.init();

 //resource mounted to path /foo/bar

 ResourceReference resourceReference = new ResourceReference("rssProducer"){

 RSSReaderResource rssResource = new RSSReaderResource();

 @Override

 public IResource getResource() {

return rssResource;

Wicket free user guide 137

13 Resource management with Wicket

 }};

 mountResource("/foo/bar", resourceReference);

}

With the configuration above (taken from project CustomResourceMounting) every request to /foo/bar
will be served by the custom resource built in the previous paragraph.

Parameter placeholders are supported as well:

@Override

public void init() {

 super.init();

 //resource mounted to path /foo with a required indexed parameter

 ResourceReference resourceReference = new ResourceReference("rssProducer"){

 RSSReaderResource rssResource = new RSSReaderResource();

 @Override

 public IResource getResource() {

return rssResource;

 }};

 mountResource("/bar/${baz}", resourceReference);

}

13.8 Shared resources
Resources can be added to a global registry in order to share them at application-level. Shared

resources are identified by an application-scoped key and they can be easily retrieved at a later time
using reference class SharedResourceReference. The global registry can be accessed with
Application's method getSharedResources. In the following excerpt of code (taken again from
project CustomResourceMounting) we register an instance of our custom RSS feeds producer as
application-shared resource:

 //init application's method

 @Override

 public void init(){

 RSSProducerResource rssResource = new RSSProducerResource();

 // ...

 getSharedResources().add("globalRSSProducer", rssResource);

 }

Now to use an application-shared resource we can simply retrieve it using class SharedResource
Reference and providing the key previously used to register the resource:

add(new ResourceLink("globalRssLink", new SharedResourceReference("globalRSSProducer")));

The URL generated for application shared resources follows the same pattern seen for package
resources:

./wicket/resource/org.apache.wicket.Application/globalRSSProducer

The last segment of the URL is the key of the resource while the previous segment contains the scope
of the resource. For application-scoped resources the scope is always the fully qualified name of class
Application. This should not be surprising since global resources are visible at application level (i.e.

Wicket free user guide 138

13 Resource management with Wicket

the scope is the application).

 Note

Package resources are also application-shared resources but they don't need to
be explicitly registered.

 Note

Remember that we can get the URL of a resource reference using method
urlFor(ResourceReference resourceRef, PageParameters params

) available with both class RequestCycle and class Component.

13.9 Customizing resource loading.
Wicket loads application's resources delegating this task to a resource locator represented by interface
org.apache.wicket.core.util.resource.locator.IResourceStreamLocator. To retrieve
or modify the current resource locator we can use the getter and setter methods defined by setting
interface IResourceSettings:

 //init application's method

 @Override

 public void init(){

 //get the resource locator

 getResourceSettings().getResourceStreamLocator();

 //set the resource locator

 getResourceSettings().setResourceStreamLocator(myLocator);

 }

The default locator used by Wicket is class ResourceStreamLocator which in turn tries to load a
requested resource using a set of implementations of interface IResourceFinder. This interface
defines method find(Class class, String pathname) which tries to resolve a resource
corresponding to the given class and path.

The default implementation of IResourceFinder used by Wicket is ClassPathResourceFinder
which searches for resources into the application class path. This is the implementation we have used
so far in our examples. However some developers may prefer storing markup files and other resources
in a separate folder rather than placing them side by side with Java classes.

To customize resource loading we can add further resource finders to our application in order to extend
the resource-lookup algorithm to different locations. Wicket already comes with two other
implementations of IResourceFinder designed to search for resources into a specific folder on the
file system. The first is class Path and it's defined in package org.apache.wicket.util.file. The
constructor of this class takes in input an arbitrary folder that can be expressed as a string path or as an
instance of Wicket utility class Folder (in package org.apache.wicket.util.file). The second
implementation of interface IResourceFinder is class WebApplicationPath which looks into a
folder placed inside webapp's root path (but not inside folder WEB-INF).

Project CustomFolder4MarkupExample uses WebApplicationPath to load the markup file and the
resource bundle for its home page from a custom folder. The folder is called markupFolder and it is
placed in the root path of the webapp. The following picture illustrates the file structure of the project:

Wicket free user guide 139

13 Resource management with Wicket

Wicket free user guide 140

13 Resource management with Wicket

Wicket free user guide 141

13 Resource management with Wicket

Wicket free user guide 142

13 Resource management with Wicket

As we can see in the picture above, we must preserve the package structure also in the custom folder
used as resource container. The code used inside application class to configure
WebApplicationPath is the following:

@Override

public void init()

{

getResourceSettings().getResourceFinders().add(

new WebApplicationPath(getServletContext(), "markupFolder"));

}

Method getResourceFinders() defined by setting interface IResourceSettings returns the list
of resource finders defined in our application. The constructor of WebApplicationPath takes in input
also an instance of standard interface javax.servlet.ServletContext which can be retrieved with
WebApplication's method getServletContext().

 Note

By default, if resource files can not be found inside application classpath, Wicket
will search for them inside “resources” folder. You may have noted this folder in
the previous picture. It is placed next to the folder “java” containing our source
files:

Wicket free user guide 143

13 Resource management with Wicket

This folder can be used to store resource files without writing any configuration
code.

13.10 Summary
In this chapter we have learnt how to manage resources with the built-in mechanism provided by

Wicket. With this mechanism we handle resources from Java code and Wicket will automatically take
care of generating a valid URL for them. We have also seen how resources can be bundled as package
resources with a component that depends on them to make it self-contained.

Then, in the second part of the chapter, we have built a custom resource and we have learnt how to
mount it to an arbitrary URL and how to make it globally available as shared resource.

Finally, in the last part of the paragraph we took a peek at the mechanism provided by the framework
to customize the locations where the resource-lookup algorithm searches for resources.

Wicket free user guide 144

14 An example of integration with JavaScript

14 An example of integration
with JavaScript

It's time to put into practice what we have learnt so far in this guide. To do this we will build a custom
date component consisting of a text field to edit a date value and a fancy calendar icon to open a
JavaScript datepicker. This chapter will also illustrate an example of integration of Wicket with a
JavaScript library like JQuery43 and its child project JQuery UI44.

14.1 What we want to do...
For end-users a datepicker is one of the most appreciated widget. It allows to simply edit a date value

with the help of a user-friendly pop-up calendar. That's why nearly all UI frameworks provide a version of
this widget.

Popular JavaScript libraries like YUI and JQuery come with a ready-to-use datepicker to enrich the
user experience of our web applications. Wicket already provides a component which integrates a text
field with a calendar widget from YUI library45, but there is no built-in component that uses a datepicker
based on JQuery library.

As both JQuery and its child project JQueryUI have gained a huge popularity in the last years, it's quite
interesting to see how to integrate them in Wicket building a custom component. In this chapter we will
create a custom datepicker based on the corresponding widget from JQueryUI project:

Warning

On Internet you can find different libraries that already offer a strong integration
between Wicket and JQuery46. The goal of this chapter is to see how to integrate
Wicket with a JavaScript framework building a simple homemade datepicker
which is not intended to provide every feature of the original JavaScript widget.

14.1.1 What features we want to implement.

43 http://jquery.com/
44 http://jqueryui.com/
45 See component org.apache.wicket.datetime.markup.html.form.DateTextField
46 See jqwicket (http://code.google.com/p/jqwicket/) , wiquery (http://code.google.com/p/wiquery/) or Wicket - JQuery UI (http://www.7thweb.

net /wicket-jquery-ui/)

Wicket free user guide 145

Illustration 14.1: How our custom datepicker will
look like (localized for English).

http://www.7thweb.net/
http://www.7thweb.net/
http://www.7thweb/
http://code.google.com/p/wiquery/
http://code.google.com/p/jqwicket/
http://jqueryui.com/
http://jquery.com/

14 An example of integration with JavaScript

Before starting to write code, we must clearly define what features we want to implement for our
component. The new component should:

• Be self-contained: we must be able to distribute it and use it in other projects without requiring
any kind of additional configuration.

• Have a customizable date format: developer must be able to decide the date format used to
display date value and to parse user input.

• Be localizable: the pop-up calendar must be localizable in order to support different languages.

That's what we'd like to have with our custom datepicker. In the rest of the chapter we will see how to
implement the features listed above and which resources must be packaged with our component.

14.2 ...and how we will do it.
Our new component will extend the a built-in text field org.apache.wicket.extensions
.markup.html.form.DateTextField which already uses a java.util.Date as model object and
already performs conversion and validation for input values. Since the component must be self-
contained, we must ensure that the JavaScript libraries it relies on (JQuery and JQuery UI) will be
always available.

Starting from version 6.0 Wicket has adopted JQuery as backing JavaScript library so we can use the
version bundled with Wicket for our custom datepicker.

To make JQuery UI available we should instead go to its official site, download the required artifacts
and use them as package resources of our component.

14.2.1 Component package resources

JQuery UI needs the following static resources in order to work properly:
• jquery-ui.min.js: the minified version of the library.
• jquery-ui.css: the CSS containing the style used by JQuery UI widgets.
• jquery-ui-i18n.min.js: the minified JavaScript containing the built-in support for localization.
• Folder 'images': the folder containing picture files used by JQuery UI widgets.

In the following picture we can see these package resources with our component class (named
JQueryDateField):

Along with the four static resources listed above, we can find also file calendar.jpg, which is the
calendar icon used to open the pop up calendar, and file JQDatePicker.js which contains the following
custom JavaScript code that binds our component to a JQuery UI datepicker:

function initJQDatepicker(inputId, countryIsoCode, dateFormat, calendarIcon) {

Wicket free user guide 146

14 An example of integration with JavaScript

var localizedArray = $.datepicker.regional[countryIsoCode];

localizedArray['buttonImage'] = calendarIcon;

localizedArray['dateFormat'] = dateFormat;

initCalendar(localizedArray);

$("#" + inputId).datepicker(localizedArray);

};

function initCalendar(localizedArray){

 localizedArray['changeMonth']= true;

 localizedArray['changeYear']= true;

 localizedArray['showOn'] = 'button';

 localizedArray['buttonImageOnly'] = true;

};

Function initJQDatepicker takes in input the following parameters:
• inputId: the id of the HTML text field corresponding to our custom component instance.
• countryIsoCode: a two-letter low-case ISO language code. It can contain also the two-letter

upper-case ISO country code separated with a minus sign (for example en-GB)
• dateFormat: the date format to use for parsing and displaying date values.

• calendarIcon: the relative URL of the icon used as calendar icon.

As we will see in the next paragraphs, its up to our component to generate this parameters and invoke
the initJQDatepicker function.

Function initCalendar is a simple utility function that sets the initialization array for datepicker
widget. For more details on JQuery UI datepicker usage see the documentation at http://jqueryui.com/
datepicker.

14.2.2 Initialization code

The initialization code for our component is contained inside its method onInitialize and is the
following:

@Override

protected void onInitialize() {

super.onInitialize();

setOutputMarkupId(true);

datePattern = new ResourceModel("jqueryDateField.shortDatePattern", "mm/dd/yy")

 .getObject();

countryIsoCode = new ResourceModel("jqueryDateField.countryIsoCode", "en-GB")

 .getObject();

PackageResourceReference resourceReference =

 new PackageResourceReference(getClass(), "calendar.jpg");

urlForIcon = urlFor(resourceReference, new PageParameters());

dateConverter = new PatternDateConverter(datePattern, false);

}

@Override

public <Date> IConverter<Date> getConverter(Class<Date> type) {

Wicket free user guide 147

http://jqueryui.com/datepicker
http://jqueryui.com/datepicker

14 An example of integration with JavaScript

return (IConverter<Date>) dateConverter;

}

The first thing to do inside onInitialize is to ensure that our component will have a markup id for
its related text field. This is done invoking setOutputMarkupId(true).

Next, JQueryDateField tries to retrieve the date format and the ISO language code that must be
used as initialization parameters. This is done using class ResourceModel which searches for a given
resource in the available bundles. If no value is found for date format or for ISO language code, default
values will be used ('mm/dd/yy' and 'en-GB').

To generate the relative URL for calendar icon, we load it as package resource reference and then we
use Component's method urlFor to get the URL value (we have seen this method in paragraph 7.3.2).

The last configuration instruction executed inside onInitialize is the instantiation of the custom
converter used by our component. This converter is an instance of the built-in class org.apache.
wicket.datetime.PatternDateConvert and must use the previously retrieved date format to
perform conversion operations. Now to tell our component to use this converter we must return it
overriding FormComponent's method getConverter.

14.2.3 Header contributor code

The rest of the code of our custom component is inside method renderHeader, which is responsible
for adding to page header the bundled JQuery library, the three files from JQuery UI distribution, the
custom file JQDatePicker.js and the invocation of function initJQDatepicker:

@Override

public void renderHead(IHeaderResponse response) {

super.renderHead(response);

//if component is disabled we don't have to load the JQueryUI datepicker

if(!isEnabledInHierarchy())

return;

//add bundled JQuery

IJavaScriptLibrarySettings javaScriptSettings =

 getApplication().getJavaScriptLibrarySettings();

response.render(JavaScriptHeaderItem.

forReference(javaScriptSettings.getJQueryReference()));

//add package resources

response.render(JavaScriptHeaderItem.

 forReference(new PackageResourceReference(getClass(), "jquery-ui.min.js")));

response.render(JavaScriptHeaderItem.

 forReference(new PackageResourceReference(getClass(), "jquery-ui-i18n.min.js")));

response.render(CssHeaderItem.

 forReference(new PackageResourceReference(getClass(), "jquery-ui.css")));

//add custom file JQDatePicker.js. Reference JQDatePickerRef is a static field

response.render(JavaScriptHeaderItem.forReference(JQDatePickerRef));

//add the init script for datepicker

String jqueryDateFormat = datePattern.replace("yyyy", "yy").toLowerCase();

String initScript = ";initJQDatepicker('" + getMarkupId() + "', '" + countryIsoCode +

 "', '" + jqueryDateFormat + "', " + "'" + urlForIcon +"');";

response.render(OnLoadHeaderItem.forScript(initScript));

}

If component is disabled the calendar icon must be hidden and no datepicker must be displayed.

Wicket free user guide 148

14 An example of integration with JavaScript

That's why renderHeader is skipped if component is not enabled.
To get a reference to the bundled JQuery library we used the JavaScript setting interface IJava
ScriptLibrarySettings and its method getJQueryReference.

In the last part of renderHeader we build the string to invoke function initJQDatepicker using the
values obtained inside onInitialize. Unfortunately the date format used by JQuery UI is different
from the one adopted in Java so we have to convert it before building the JavaScript code. This init
script is rendered into header section using a OnLoadHeaderItem to ensure that it will be executed
after all the other scripts have been loaded.

 Note

If we add more than one instance of our custom component to a single page,
static resources are rendered to the header section just once. Wicket
automatically checks if a static resource is already referenced by a page and if
so, it will not render it again.
This does not apply to the init script which is dynamically generated and is
rendered for every instance of the component.

Warning

Our datepicker is not ready yet to be used with AJAX. In chapter 16 we will see
how to modify it to make it AJAX-compatible.

14.3 Summary
In this brief chapter we have seen how custom components can be integrated with DHTML 47

technologies. To do so we have used most of what we have learnt in this guide. Now we are able to
build complex components with a rich user experience. However this is not enough yet to develop Web
2.048 applications. We still have to cover a fundamental technology like AJAX and some other Wicket-
related topics that will help us building our application in more modular and efficient way.

47 http://en.wikipedia.org/wiki/Dynamic_HTML
48 http://en.wikipedia.org/wiki/Web_2.0

Wicket free user guide 149

http://en.wikipedia.org/wiki/Web_2.0
http://en.wikipedia.org/wiki/Dynamic_HTML

15 Wicket advanced topics

15 Wicket advanced topics

In this chapter we will learn some advanced topics which have not been covered yet in the previous
chapters but which are nonetheless essential to make the most of Wicket and to build sophisticated web
applications.

15.1 Enriching components with behaviors
With class org.apache.wicket.behavior.Behavior Wicket provides a very flexible mechanism

to share common features across different components and to enrich existing components with further
functionalities. As the class name suggests, Behavior adds a generic behavior to a component
modifying its markup and/or contributing to the header section of the page (Behavior implements the
interface IHeaderContributor).

One or more behaviors can be added to a component with Component's method
add(Behavior...), while to remove a behavior we must use method remove(Behavior).

Here is a partial list of methods defined inside class Behavior along with a brief description of what
they do:

• beforeRender(Component component): called when a component is about to be rendered.
• afterRender(Component component): called after a component has been rendered.
• onComponentTag(Component component, ComponentTag tag): called when component

tag is being rendered.
• getStatelessHint(Component component): returns if a behavior is stateless or not.
• bind(Component component): called after a behavior has been added to a component.
• unbind(Component component): called when a behavior has been removed from a

component.
• detach(Component component): overriding this method a behavior can detach its state before

being serialized.
• isEnabled(Component component): tells if the current behavior is enabled for a given

component. When a behavior is disabled it will be simply ignored and not executed.
• isTemporary(Component component): tells component if the current behavior is temporary. A

temporary behavior is discarded at the end of the current request (i.e it's executed only once).
• onConfigure(Component component): called right after the owner component has been

configured.
• onRemove(Component component): called when the owner component has been removed

from its container.
• renderHead(Component component, IHeaderResponse response): overriding this method

behaviors can render resources to the header section of the page.

For example the following behavior prepends a red asterisk to the tag of a form component if this one
is required:

public class RedAsteriskBehavior extends Behavior {

 @Override

 public void beforeRender(Component component) {

Wicket free user guide 150

15 Wicket advanced topics

 Response response = component.getResponse();

 StringBuffer asterisktHtml = new StringBuffer(200);

 if(componet instanceof FormComponent

 && ((FormComponent)component).isRequired()){

 asteriskHtml.append(" <b style=\"color:red;font-size:medium\">*");

 }

 response.write(asteriskHtml);

 }

}

Since method beforeRender is called before the coupled component is rendered, we can use it to
prepend custom markup to component tag. This can be done writing our markup directly to the current
Response object, as we did in the example above.

Please note that we could achieve the same result overriding component method onBeforeRender.
However using a behavior we can easily reuse our custom code with any other kind of component
without modifying its source code. As general best practice we should always consider to implement a
new functionality using a behavior if it can be shared among different kinds of component.

Behaviors play also a strategic role in the built-in AJAX support provided by Wicket, as we will see in
the next chapter.

15.2 Generating callback URLs with IRequestListener
With Wicket it's quite easy to build a callback URL that executes a specific method on server side. This

method must be defined in a functional interface49 that inherits from built-in org.apache.wicket.
IRequestListener and it must be a void method with no parameters in input:

public interface IMyListener extends IRequestListener

{

/**

 * Called when the relative callback URL is requested.

 */

void myCallbackMethod();

}

To control how the method will be invoked we must use class org.apache.wicket.Request
ListenerInterface. In Wicket is a common practice to instantiate this class as a public static field
inside the relative callback interface:

public interface IMyListener extends IRequestListener

{

/**RequestListenerInterface instance*/

public static final RequestListenerInterface INTERFACE = new

 RequestListenerInterface(IMyListener.class);

/**

 * Called when the relative callback URL is requested.

 */

void myCallbackMethod();

}

By default RequestListenerInterface will respond rendering the current page after the callback

49 A functional interface is an an interface that defines just one method.

Wicket free user guide 151

15 Wicket advanced topics

method has been executed (if we have a non-AJAX request). To change this behavior we can use setter
method setRenderPageAfterInvocation(boolean).

Now that our callback interface is complete we can generate a callback URL with Component's
method urlFor(RequestListenerInterface, PageParameters) or with method urlFor
(Behavior, RequestListenerInterface, PageParameters) if we are using a callback interface
with a behavior (see the following example).

Project CallbackURLExample contains a behavior (class OnChangeSingleChoiceBehavior) that
implements a callback interface to update the model of an AbstractSingleSelectChoice
component when user changes the selected option (it provides the same functionality of method want
OnSelectionChangedNotifications).

Instead of a custom callback interface, OnChangeSingleChoiceBehavior implements built-in
interface org.apache.wicket.behavior.IBehaviorListener which is designed to generate a
callback URL for behaviors. The callback method defined in this interface is onRequest() and the
following is the implementation provided by OnSelectionChangedNotifications:

@Override

public void onRequest() {

Request request = RequestCycle.get().getRequest();

IRequestParameters requestParameters = request.getRequestParameters();

StringValue choiceId = requestParameters.getParameterValue("choiceId");

//boundComponent is the component that the behavior it is bound to.

boundComponent.setDefaultModelObject(convertChoiceIdToChoice(choiceId.toString()));

}

When invoked via URL, the behavior expects to find a request parameter (choiceId) containing the id
of the selected choice. This value is used to obtain the corresponding choice object that must be used to
set the model of the component that the behavior is bound to (boundComponent). Method
convertChoiceIdToChoice is in charge of retrieving the choice object given its id and it has been
copied from class AbstractSingleSelectChoice.

Another interesting part of OnChangeSingleChoiceBehavior is its method onComponentTag
where some JavaScript “magic” is used to move user's browser to the callback URL when event
“change” occurs on bound component:

@Override

public void onComponentTag(Component component, ComponentTag tag) {

super.onComponentTag(component, tag);

CharSequence callBackURL = getCallbackUrl();

String separatorChar = (callBackURL.toString().indexOf('?') > -1 ? "&" : "?");

String finalScript = "var isSelect = $(this).is('select');\n" +

 "var component;\n" +

 "if(isSelect)\n" +

 " component = $(this);\n" +

 "else \n" +

 " component = $(this).find('input:radio:checked');\n" +

 "window.location.href='" + callBackURL + separatorChar +

 "choiceId=' + " + "component.val()";

tag.put("onchange", finalScript);

}

Wicket free user guide 152

15 Wicket advanced topics

The goal of onComponentTag is to build an onchange handler that forces user's browser to move to
the callback URL (modifing standard property window.location.href). Please note that we have
appended the expected parameter (choiceId) to the URL retrieving its value with a JQuery selector
suited for the current type of component (a drop-down menu or a radio group). Since we are using
JQuery in our JavaScript code, the behavior comes also with method renderHead that adds the
bundled JQuery library to the current page.

Method getCallbackUrl() is used to generate the callback URL for our custom behavior and it has
been copied from built-in class AbstractAjaxBehavior:

public CharSequence getCallbackUrl(){

if (boundComponent == null){

throw new IllegalArgumentException(

"Behavior must be bound to a component to create the URL");

}

final RequestListenerInterface rli;

rli = IBehaviorListener.INTERFACE;

return boundComponent.urlFor(this, rli, new PageParameters());

}

Static field IBehaviorListener.INTERFACE is the implementation of RequestListener
Interface defined inside callback interface IBehaviorListener.

The home page of project CallbackURLExample contains a DropDownChoice and a RadioChoice
which use our custom behavior. There are also two labels to display the content of the models of the two
components:

 Note

Implementing interface IBehaviorListener makes a behavior stateful
because its callback URL is specific for a given instance of component.

15.3 Wicket events infrastructure
Starting from version 1.5 Wicket offers an event-based infrastructure for inter-component

communication. The infrastructure is based on two simple interfaces (both in package org.
apache.wicket.event) : IEventSource and IEventSink.

The first interface must be implemented by those entities that want to broadcast en event while the
second interface must be implemented by those entities that want to receive a broadcast event.

The following entities already implement both these two interfaces (i.e. they can be either sender or
receiver): Component, Session, RequestCycle and Application.
IEventSource exposes a single method named send which takes in input three parameters:

• sink: an implementation of IEventSink that will be the receiver of the event.
• broadcast: a Broadcast enum which defines the broadcast method used to dispatch the

Wicket free user guide 153

15 Wicket advanced topics

event to the sink and to other entities such as sink children, sink containers, session object,
application object and the current request cycle. It has four possible values:

Value Description

BREADTH The event is sent first to the specified sink and then to all its

children components following a breadth-first order.

DEPTH The event is sent to the specified sink only after it has been

dispatched to all its children components following a depth-first

order.

BUBBLE The event is sent first to the specified sink and then to its parent

containers.

EXACT The event is sent only to the specified sink.

• payload: a generic object representing the data sent with the event.

Each broadcast mode has its own traversal order for Session, RequestCycle and Application.
See JavaDoc of class Broadcast for further details about this order.

Interface IEventSink exposes callback method onEvent(IEvent<?> event) which is triggered
when a sink receives an event. The interface IEvent represents the received event and provides getter
methods to retrieve the event broadcast type, the source of the event and its payload. Typically the
received event is used checking the type of its payload object :

@Override

public void onEvent(IEvent event) {

 //if the type of payload is MyPayloadClass perform some actions

 if(event.getPayload() instanceof MyPayloadClass) {

 //execute some business code.

 }else{

 //other business code

 }

}

Project InterComponetsEventsExample provides a concrete example of sending an event to a
component (named 'container in the middle') using all the available broadcast methods:

Wicket free user guide 154

15 Wicket advanced topics

Wicket free user guide 155

15 Wicket advanced topics

15.4 Initializers
Some components or resources may need to be configured before being used in our applications.

While so far we used Application's init method to initialize these kinds of entities, Wicket offers a
more flexible and modular way to configure our classes.

During application's bootstrap Wicket searches for any properties file named wicket.properties
placed in one of the classpath roots visible to the application50. When one of these files is found, the
initializer defined inside it will be executed. An initializer is an implementation of interface
org.apache.wicket.IInitializer and is defined inside wicket.properties with a line like
this:

initializer=org.wicketTutorial.MyInitializer

The fully qualified class name corresponds to the initializer that must be executed. Interface
IInitializer defines method init(Application) which should contain our initialization code,
and method destroy(Application) which is invoked when application is terminated:

public class MyInitializer implements IInitializer{

public void init(Application application) {

//initialization code

}

public void destroy(Application application) {

//code to execute when application is terminated

}

}

Only one initializer can be defined in a single wicket.properties file. To overcome this limit we can
create a main initializer that in turn executes every initializer we need:

public class MainInitializer implements IInitializer{

public void init(Application application) {

new AnotherInitializer().init(application);

50 This set of classpath roots includes the root of the package of the application class and the roots of the visible JARs

Wicket free user guide 156

Illustration 15.1: Project InterComponentsEventsExample displaying the order in which the
entities are notified using broadcast type BUBBLE

15 Wicket advanced topics

new YetAnotherInitializer().init(application);

//...

}

//destroy...

}

15.5 Using JMX with Wicket
JMX (Java Management Extensions) is the standard technology adopted in Java for managing and

monitoring running applications or Java Virtual Machines. Wicket offers support for JMX through module
wicket-jmx. In this paragraph we will see how we can connect to a Wicket application using JMX. In our
example we will use JConsole as JMX client. This program is bundled with Java SE since version 5 and
we can run it typing jconsole in our OS shell.

Once JConsole has started it will ask us to establish a new connection to a Java process, choosing
between a local process or a remote one. In the following picture we have selected the process
corresponding to the local instance of Jetty server we used to run one of our example projects:

After we have established a JMX connection, JConsole will show us the following set of tabs

JMX exposes application-specific informations using special objects called MBeans (Manageable
Beans), hence if we want to control our application we must open the corresponding tab. The MBeans
containing the application's informations is named org.apache.wicket.app.<filter/servlet name>.

In our example we have used wicket.test as filter name51 for our application:

51 We have discussed filter name and web.xml in paragraph 2.2.1.

Wicket free user guide 157

15 Wicket advanced topics

As we can see in the picture above, every MBean exposes a node containing its attributes and another
node showing the possible operations that can be performed on the object. In the case of a Wicket
application the available operations are clearMarkupCache and clearLocalizerCache:

Wicket free user guide 158

15 Wicket advanced topics

With these two operations we can force Wicket to clear the internal caches used to load components
markup and resource bundles. This can be particularly useful if we have our application running in
DEPLOYMENT mode and we want to publish minor fixes for markup or bundle files (like spelling or typo
corrections) without restarting the entire application. Without cleaning these two caches Wicket would
continue to use cached values ignoring any change made to markup or bundle files.

Some of the exposed properties are editable, hence we can tune their values while the application is
running. For example if we look at the properties of ApplicationSettings we can set the maximum
size allowed for an upload modifying the attribute DefaultMaximumUploadSize:

15.6 Generating HTML markup from code.
So far, as markup source for our pages/panels we have used a static markup file, no matter if it was

inherited or directly associated to the component. Now we want to investigate a more complex use case
where we want to dynamical generate the markup directly inside component code.

To become a markup producer, a component must simply implement interface org.apache.
wicket.markup.IMarkupResourceStreamProvider. The only method defined in this interface is
getMarkupResourceStream(MarkupContainer, Class<?>) which returns an utility interface
called IResourceStream representing the actual markup.

In the following example we have a custom panel without a related markup file that generates a simple
<div> tag as markup:

public class AutoMarkupGenPanel extends Panel implements IMarkupResourceStreamProvider

Wicket free user guide 159

15 Wicket advanced topics

{

public AutoMarkupGenPanel(String id, IModel<?> model) {

super(id, model);

}

@Override

public IResourceStream getMarkupResourceStream(MarkupContainer container,

Class<?> containerClass) {

String markup = "<div>Panel markup</div>";

StringResourceStream resourceStream = new StringResourceStream(markup);

return resourceStream;

}

}

Class StringResourceStream is a resource stream that uses a String instance as backing object.

15.6.1 Avoiding markup caching

As we have seen in the previous paragraph, Wicket uses an internal cache for components markup.
This can be a problem if our component dynamical generates its markup when it is rendered because
once the markup has been cached, Wicket will always use the cached version for the specific
component. To overwrite this default caching policy, a component can implement interface
IMarkupCacheKeyProvider.

This interface defines method getCacheKey(MarkupContainer, Class<?>) which returns a
string value representing the key used by Wicket to retrieve the markup of the component from the
cache. If this value is null the markup will not be cached, allowing the component to display the last
generated markup each time it is rendered:

public class NoCacheMarkupPanel extends Panel implements IMarkupCacheKeyProvider {

public NoCacheMarkupPanel(String id, IModel<?> model) {

super(id, model);

}

/**

* Generate a dynamic HTML markup that changes every time

* the component is rendered

*/

@Override

public IResourceStream getMarkupResourceStream(MarkupContainer container,

Class<?> containerClass) {

String markup = "<div>Panel with current nanotime: " + System.nanoTime() +

 "</div>";

StringResourceStream resourceStream = new StringResourceStream(markup);

return resourceStream;

}

/**

* Avoid markup caching for this component

*/

@Override

public String getCacheKey(MarkupContainer arg0, Class<?> arg1) {

return null;

Wicket free user guide 160

15 Wicket advanced topics

}

}

15.7 Summary
In this chapter we have introduced some advanced topics we didn't have the chance to cover yet. We

have started talking about behaviors and we have seen how they can be used to enrich existing
components (promoting a component-oriented approach). Behaviors are also fundamental to work with
AJAX in Wicket, as we will see in the next chapter.

After behaviors we have learnt how to generate callback URLs to execute a custom method on server
side defined inside a specific callback interface.

The third topic of the chapter has been the event infrastructure provided in Wicket for inter-component
communication which brings to our components a desktop-like event-driven architecture.

Then, we have introduced a new entity called initializer which can be used to configure resources and
component in a modular and self-contained way.

We have also looked at Wicket support for JMX and we have seen how to use this technology for
monitoring and managing our running applications.

Finally we have introduced a new technique to generate the markup of a component from its Java
code.

Wicket free user guide 161

16 Working with AJAX

16 Working with AJAX

AJAX has become a must-have for nearly all kinds of web application. This technology does not only
help to achieve a better user experience but it also allows to improve the bandwidth performance of web
applications. Using AJAX usually means writing tons of JavaScript code to handle asynchronous
requests and to update user interface, but with Wicket we can leave all this boilerplate code to the
framework and we don't even need to write a single line of JavaScript to start using AJAX.

In this chapter we will learn how to leverage the AJAX support provided by Wicket to make our
applications fully web 2.052 compliant.

16.1 How to use AJAX components and behaviors.
Wicket support for AJAX is implemented in file wicket-ajax-jquery.js which makes complete

transparent to Java code any detail about AJAX communication.
AJAX components and behaviors shipped with Wicket expose one or more callback methods which

are executed when they receive an AJAX request. One of the arguments of these methods is an
instance of interface org.apache.wicket.ajax.AjaxRequestTarget.

For example component AjaxLink (in package org.apache.wicket.ajax.markup.html)
defines abstract method onClick(AjaxRequestTarget target) which is executed when user
clicks on the component:

new AjaxLink("ajaxLink"){

@Override

public void onClick(AjaxRequestTarget target) {

 //some server side code...

}

};

Using AjaxRequestTarget we can specify the content that must be sent back to the client as
response to the current AJAX request. The most commonly used method of this interface is probably
add(Component... components). With this method we tell Wicket to render again the specified
components and refresh their markup via AJAX:

new AjaxLink("ajaxLink"){

@Override

public void onClick(AjaxRequestTarget target) {

 //modify the model of a label and refresh it on browser

 label.setDefaultModelObject("Another value 4 label.");

 target.add(label);

}

};

Components can be refreshed via Ajax only if they have rendered a markup id for their related tag. As
a consequence, we must remember to set a valid id value on every component we want to add to
AjaxRequestTarget. This can be done using one of the two methods seen in paragraph 4.3:

52 http://en.wikipedia.org/wiki/Web_2.0

Wicket free user guide 162

http://en.wikipedia.org/wiki/Web_2.0

16 Working with AJAX

final Label label = new Label("labelComponent", "Initial value.");

//autogenerate a markup id

label.setOutputMarkupId(true);

add(label);

//...

new AjaxLink("ajaxLink"){

@Override

public void onClick(AjaxRequestTarget target) {

 //modify the model of a label and refresh it on client side

 label.setDefaultModelObject("Another value 4 label.");

 target.add(label);

}

};

Another common use of AjaxRequestTarget is to prepend or append some JavaScript code to the
generated response. For example the following AJAX link displays an alert box as response to user's
click:

new AjaxLink("ajaxLink"){

@Override

public void onClick(AjaxRequestTarget target) {

 target.appendJavaScript(";alert('Hello!!');");

}

};

Warning

Repeaters component that have org.apache.wicket.markup.repeater
AbstractRepeater as base class (like ListView, RepeatingView, etc...)
can not be directly updated via AJAX.
if we want to refresh their markup via AJAX we must add one of their parent
containers to the AjaxRequestTarget.

16.2 Built-in AJAX components
Wicket distribution comes with a number of built-in AJAX components ready to be used. Some of them

are the ajaxified version of common components like links and buttons, while others are AJAX-specific
components.

AJAX components are not different from any other component seen so far and they don't require any
additional configuration to be used. As we will shortly see, switching from a classic link or button to the
ajaxified version is just a matter of appending “Ajax” to the component class name.

This paragraph provides an overview of what we can find in Wicket to start writing AJAX-enhanced
web applications.

16.2.1 Links and buttons

In the previous paragraph we have already introduced component AjaxLink. Wicket provides also
the ajaxified versions of submitting components SubmitLink and Button which are simply called
AjaxSubmitLink and AjaxButton. These components come with a version of methods onSubmit,
onError and onAfterSubmit that takes in input also an instance of AjaxRequestTarget.

Both components are in package org.apache.wicket.ajax.markup.html.form.

16.2.2 Fallback components

Wicket free user guide 163

16 Working with AJAX

Building an entire site using AJAX can be risky as some clients may not support this technology. In
order to provide an usable version of our site also to these clients, we can use components
AjaxFallbackLink and AjaxFallbackButton which are able to automatically degrade to a
standard link or to a standard button if client doesn't support AJAX.

16.2.3 AJAX Checkbox

Class org.apache.wicket.ajax.markup.html.form.AjaxCheckBox is a checkbox component
that updates its model via AJAX when user changes its value. Its AJAX callback method is
onUpdate(AjaxRequestTarget target). The component extends standard checkbox component
CheckBox adding an AjaxFormComponentUpdatingBehavior to itself (we will see this behavior
later in paragraph 16.3.3).

16.2.4 AJAX editable labels

An editable label is a special label that can be edited by user when she/he clicks on it. Wicket ships
three different implementations for this component (all inside package org.apache.wicket.
extensions.ajax.markup.html):

• AjaxEditableLabel: it's a basic version of editable label. User can edit the content of the label
with a text field. This is also the base class for the other two editable labels.

• AjaxEditableMultiLineLabel: this label supports multi-line values and uses a text area as editor
component.

• AjaxEditableChoiceLabel: this label uses a drop-down menu to edit its value.

Base component AjaxEditableLabel exposes the following set of AJAX-aware methods that can
be overriden:

• onEdit(AjaxRequestTarget target): called when user clicks on component. The default
implementation shows the component used to edit the value of the label.

• onSubmit(AjaxRequestTarget target): called when the value has been successfully updated
with the new input.

• onError(AjaxRequestTarget target): called when the new inserted input has failed validation.
• onCancel(AjaxRequestTarget target): called when user has exited from editing mode

pressing escape key. The default implementation brings back the label to its initial state hiding
the editor component.

Wicket module wicket-examples contains page class EditableLabelPage.java which shows
all these three components together. You can see this page in action at http://www.wicket-
library.com/wicket-examples-6.0.x/ajax/editable-label:

Wicket free user guide 164

Illustration 16.1: The edit label example bundled with Wicket

http://www.wicket-library.com/wicket-examples-6.0.x/ajax/editable-label
http://www.wicket-library.com/wicket-examples-6.0.x/ajax/editable-label

16 Working with AJAX

16.2.5 Autocomplete text field

On Internet we can find many examples of text fields that display a list of suggestions (or options) while
the user types a text inside them. This feature is known as autocomplete functionality.

Wicket offers an out-of-the-box implementation of an autocomplete text field with component
org.apache.wicket.extensions.ajax.markup.html.autocomplete.AutoCompleteTextFi
eld.

When using AutoCompleteTextField we are required to implement its abstract method
getChoices(String input) where the input parameter is the current input of the component. This
method returns an iterator over the suggestions that will be displayed as a drop-down menu:

Suggestions are rendered using a render which implements interface IAutoCompleteRenderer.
The default implementation simply calls toString() on each suggestion object. If we need to work
with a custom render we can specify it via component constructor.
AutoCompleteTextField supports a wide range of settings that are passed to its constructor with

class AutoCompleteSettings.
One of the most interesting parameter we can specify for AutoCompleteTextField is the throttle

delay which is the amount of time (in milliseconds) that must elapse between a change of input value
and the transmission of a new Ajax request to display suggestions. This parameter can be set with
method setThrottleDelay(int):

AutoCompleteSettings settings = new AutoCompleteSettings();

//set throttle to 400 ms: component will wait 400ms before displaying the options

settings.setThrottleDelay(400);

//...

AutoCompleteTextField field = new AutoCompleteTextField<T>("field", model) {

@Override

protected Iterator getChoices(String arg0) {

//return an iterator over the options

}

};

Wicket module wicket-examples contains page class AutoCompletePagePage.java which
shows an example of autocomplete text field. The running example is available at http://www.wicket-
library.com/wicket-examples-6.0.x/ajax/autocomplete.

16.2.6 Modal window

Class org.apache.wicket.extensions.ajax.markup.html.modal.ModalWindow is an imp-

Wicket free user guide 165

Illustration 16.2: The autocomplete example bundled with
Wicket

http://www.wicket-library.com/wicket-examples-6.0.x/ajax/autocomplete
http://www.wicket-library.com/wicket-examples-6.0.x/ajax/autocomplete

16 Working with AJAX

lementation of a modal window53 based on AJAX:

The content of a modal window can be either another component or a page. In the first case the id of
the component used as content must be retrieved with method getContentId().

If instead we want to use a page as window content, we must implement the inner interface
ModalWindow.PageCreator and pass it to method setPageCreator. The page used as content will
be embedded in a <iframe> tag.

To display a modal window we must call its method show(AjaxRequestTarget target). This is
usually done inside the AJAX callback method of another component (like an AjaxLink). The following
markup and code are taken from project BasicModalWindowExample and illustrate a basic usage of a
modal window:

Html:

<body>

<h2>Modal Windod example</h2>

<a wicket:id="openWindow">Open the window!

<div wicket:id="modalWindow"></div>

</body>

Java code:

 public HomePage(final PageParameters parameters) {
 super(parameters);

 final ModalWindow modalWindow = new ModalWindow("modalWindow");

 Label label = new Label(modalWindow.getContentId(), "I'm a modal window!");

 modalWindow.setContent(label);

 modalWindow.setTitle("Modal window");

 add(modalWindow);

 add(new AjaxLink("openWindow") {

 @Override

 public void onClick(AjaxRequestTarget target) {

modalWindow.show(target);

 }

53 http://en.wikipedia.org/wiki/Modal_window

Wicket free user guide 166

Illustration 16.3: The modal window from project
BasicModalWindowExample

http://en.wikipedia.org/wiki/Modal_window

16 Working with AJAX

});

 }

Just like any other component also ModalWindow must be added to a markup tag, like we did in our
example using a <div> tag. Wicket will automatically hide this tag in the final markup appending the style
value display:none.

The component provides different setter methods to customize the appearance of the window:
• setTitle(String): specifies the title of the window
• setResizable(boolean): by default the window is resizeable. If we need to make its size fixed

we can use this method to turn off this feature.
• setInitialWidth(int) and setInitialHeight(int): set the initial dimensions of the window.
• setMinimalWidth(int) and setMinimalHeight(int): specify the minimal dimensions of the

window.
• setCookieName(String): this method can be used to specify the name of the cookie used on

client side to store size and position of the window when it is closed. The component will use
this cookie to restore these two parameters the next time the window will be opened.
If no cookie name is provided, the component will not remember its last position and size.

• setCssClassName(String): specifies the CSS class used for the window.
• setAutoSize(boolean): when this flag is set to true the window will automatically adjust its

size to fit content width and height. By default it is false.

The modal window can be closed from code using its method close(AjaxRequestTarget
target). The currently opened window can be closed also with the following JavaScript instruction:

Wicket.Window.get().close();

ModalWindow gives the opportunity to perform custom actions when window is closing. Inner interface
ModalWindow.WindowClosedCallback can be implemented and passed to window's method
setWindowClosedCallback to specify the callback that must be executed after window has been
closed:

modalWindow.setWindowClosedCallback(new ModalWindow.WindowClosedCallback() {

@Override

public void onClose(AjaxRequestTarget target) {

 //custom code...

}

});

16.2.7 Tree repeaters

Class org.apache.wicket.extensions.markup.html.repeater.tree.AbstractTree is
the base class of another family of repeaters called tree repeaters and designed to display a data
hierarchy as a tree, resembling the behavior and the look & feel of desktop tree components. A classic
example of tree component on desktop is the tree used by nearly all file managers to navigate file
system:

Wicket free user guide 167

16 Working with AJAX

Because of their highly interactive nature, tree repeaters are implemented as AJAX components,
meaning that they are updated via AJAX when we expand or collapse their nodes.

The basic implementation of a tree repeater shipped with Wicket is component NestedTree. In order
to use a tree repeater we must provide an implementation of interface ITreeProvider which is in
charge of returning the nodes that compose the tree.

Wicket comes with a built-in implementation of ITreeProvider called TreeModelProvider that
works with the same tree model54 and nodes used by Swing component javax.swing.JTree. These
Swing entities should be familiar to you if you have previously worked with the old tree repeaters
(components Tree and TreeTable) that have been deprecated with Wicket 6 and that are strongly
dependent on Swing-based model and nodes. TreeModelProvider can be used to migrate your code
to the new tree repeaters.

In the next example (project CheckBoxAjaxTree) we will build a tree that displays some of the main
cities of three European countries: Italy, Germany and France. The cities are sub-nodes of a main node
representing the relative county. The nodes of the final tree will be also selectable with a checkbox
control. The whole tree will have the classic look & feel of Windows XP. This is how our tree will look
like:

We will start to explore the code of this example from the home page. The first portion of code we will
see is where we build the nodes and the TreeModelProvider for the three. As tree node we will use
Swing class javax.swing.tree.DefaultMutableTreeNode:

public class HomePage extends WebPage {

 public HomePage(final PageParameters parameters) {

54 Tree model is an implementation of interface javax.swing.tree.TreeModel and it has nothing to do with Wicket models!

Wicket free user guide 168

Illustration 16.4: File system tree on Windows XP (on the left) and
Ubuntu (on the right)

Illustration 16.5: The tree repeater from
project CheckBoxAjaxTree

16 Working with AJAX

 super(parameters);

 DefaultMutableTreeNode root = new DefaultMutableTreeNode("Cities of Europe");

 addNodes(addNodes(root, "Italy"), "Rome", "Venice", "Milan", "Florence");

 addNodes(addNodes(root, "Germany"),"Stuttgart","Munich","Berlin","Dusseldorf", "Dresden");

 addNodes(addNodes(root, "France"), "Paris","Toulouse","Strasbourg","Bordeaux", "Lyon");

 DefaultTreeModel treeModel = new DefaultTreeModel(root);

 TreeModelProvider<DefaultMutableTreeNode> modelProvider = new

 TreeModelProvider<DefaultMutableTreeNode>(treeModel) {

 @Override

 public IModel<DefaultMutableTreeNode> model(DefaultMutableTreeNode object) {

 return Model.of(object);

 }

 };

 //To be continued...

Nodes have been built using simple strings as data objects and invoking custom utility method
addNodes which converts string parameters into children nodes for a given parent node. Once we have
our tree of DefaultMutableTreeNodes we can build the Swing tree model (DefaultTreeModel)
that will be the backing object for a TreeModelProvider. This provider wraps each node in a model
invoking its abstract method model. In our example we have used a simple Model as wrapper model.

Scrolling down the code we can see how the tree component is instantiated and configured before
being added to the home page:

 //Continued from previous snippet...

 NestedTree<DefaultMutableTreeNode> tree = new NestedTree<DefaultMutableTreeNode>("tree",

 modelProvider)

 {

 @Override

 protected Component newContentComponent(String id, IModel<DefaultMutableTreeNode>model)

 {

 return new CheckedFolder<DefaultMutableTreeNode>(id, this, model);

 }

 };

 //select Windows theme

 tree.add(new WindowsTheme());

 add(tree);

 }

 //implementation of addNodes

 //...

}

To use tree repeaters we must implement their abstract method newContentComponent which is
called internally by base class AbstractTree when a new node must be built. As content component
we have used built-in class CheckedFolder which combines a Folder component with a CheckBox
form control.

The final step before adding the tree to its page is to apply a theme to it. Wicket comes with two
behaviors, WindowsTheme and HumanTheme, which correspond to the classic Windows XP theme and
to the Human theme from Ubuntu.

Wicket free user guide 169

16 Working with AJAX

Our checkable tree is finished but our work is not over yet because the component doesn't offer many
functionalities as it is. Unfortunately neither NestedTree nor CheckedFolder provide a means for
collecting checked nodes and returning them to client code. It's up to us to implement a way to keep
track of checked nodes.

Another nice feature we would like to implement for our tree is the following user-friendly behavior that
should occur when a user checks/unchecks a node:

• When a node is checked also all its children nodes (if any) must be checked. We must also
ensure that all the ancestors of the checked node (root included) are checked, otherwise we
would get an inconsistent selection.

• When a node is unchecked also all its children nodes (if any) must be unchecked and we
must also ensure that ancestors get unchecked if they have no more checked children.

The first goal (keeping track of checked node) can be accomplished building a custom version of
CheckedFolder that uses a shared Java Set to store checked node and to verify if its node has been
checked. This kind of solution requires a custom model for checkbox component in order to reflect its
checked status when its container node is rendered. This model must implement typed interface
IModel<Boolean> and must be returned by CheckedFolder's method newCheckBoxModel.

For the second goal (auto select/unselect children and ancestor nodes) we can use CheckedFolder's
callback method onUpdate(AjaxRequestTarget) that is invoked after a checkbox is clicked and its
value has been updated. Overriding this method we can handle user click adding/removing nodes
to/from the Java Set.

Following this implementation plan we can start coding our custom CheckedFolder (named
AutocheckedFolder):

public class AutocheckedFolder<T> extends CheckedFolder<T> {

 private ITreeProvider<T> treeProvider;

 private IModel<Set<T>> checkedNodes;

 private IModel<Boolean> checkboxModel;

 public AutocheckedFolder(String id, AbstractTree<T> tree,

 IModel<T> model, IModel<Set<T>> checkedNodes) {

 super(id, tree, model);

 this.treeProvider = tree.getProvider();

 this.checkedNodes = checkedNodes;

 }

 @Override

 protected IModel<Boolean> newCheckBoxModel(IModel<T> model) {

 checkboxModel = new CheckModel();

 return checkboxModel;

 }

 @Override

 protected void onUpdate(AjaxRequestTarget target) {

 super.onUpdate(target);

 T node = getModelObject();

 boolean nodeChecked = checkboxModel.getObject();

 addRemoveSubNodes(node, nodeChecked);

 addRemoveAncestorNodes(node, nodeChecked);

Wicket free user guide 170

16 Working with AJAX

 }

 class CheckModel extends AbstractCheckBoxModel{

 @Override

 public boolean isSelected() {

 return checkedNodes.getObject().contains(getModelObject());

 }

 @Override

 public void select() {

 checkedNodes.getObject().add(getModelObject());

 }

 @Override

 public void unselect() {

 checkedNodes.getObject().remove(getModelObject());

 }

 }

}

The constructor of this new component takes in input a further parameter which is the set containing
checked nodes.

Class CheckModel is the custom model we have implemented for checkbox control. As base class for
this model we have used AbstractCheckBoxModel which is provided to implement custom models
for checkbox controls.

Methods addRemoveSubNodes and addRemoveAncestorNodes are called to automatically
add/remove children and ancestor nodes to/from the current Set. Their implementation is mainly
focused on the navigation of tree nodes and it heavily depends on the internal implementation of the
tree, so we won't dwell on their code.

Now we are just one step away from completing our tree as we still have to find a way to update the
checked status of both children and ancestors nodes on client side. Although we could easily
accomplish this task by simply refreshing the whole tree via AJAX, we would like to find a better and
more performant solution for this task.

When we modify the checked status of a node we don't expand/collapse any node of the three so we
can simply update the desired checkboxes rather than updating the entire tree component. This
alternative approach could lead to a more responsive interface and to a strong reduction of bandwidth
consumption.

With the help of JQuery we can code a couple of JavaScript functions that can be used to check/
uncheck all the children and ancestors of a given node. Then, we can append these functions to the
current AjaxRequest at the end of method onUpdate:

 @Override

 protected void onUpdate(AjaxRequestTarget target) {

 super.onUpdate(target);

 T node = getModelObject();

 boolean nodeChecked = checkboxModel.getObject();

 addRemoveSubNodes(node, nodeChecked);

 addRemoveAncestorNodes(node, nodeChecked);

Wicket free user guide 171

16 Working with AJAX

 updateNodeOnClientSide(target, nodeChecked);

 }

 protected void updateNodeOnClientSide(AjaxRequestTarget target,

boolean nodeChecked) {

 target.appendJavaScript(";CheckAncestorsAndChildren.checkChildren('" + getMarkupId() +

 "'," + nodeChecked + ");");

 target.appendJavaScript(";CheckAncestorsAndChildren.checkAncestors('" + getMarkupId() +

 "'," + nodeChecked + ");");

 }

The JavaScript code can be found inside file autocheckedFolder.js which is added to the header
section as package resource:

@Override

public void renderHead(IHeaderResponse response) {

PackageResourceReference scriptFile = new PackageResourceReference(this.getClass(),

 "autocheckedFolder.js");

response.render(JavaScriptHeaderItem.forReference(scriptFile));

}

16.2.8 Working with hidden components

When a component is not visible its markup and the related id attribute are not rendered in the final
page, hence it can not be updated via AJAX. To overcome this problem we must use Component's
method setOutputMarkupPlaceholderTag(true) which has the effect of rendering a hidden
 tag containing the markup id of the hidden component:

final Label label = new Label("labelComponent", "Initial value.");

//make label invisible

label.setVisible(false);

//ensure that label will leave a placeholder for its markup id

label.setOutputMarkupPlaceholderTag(true);

add(label);

//...

new AjaxLink("ajaxLink"){

@Override

public void onClick(AjaxRequestTarget target) {

 //turn label to visible

 label.setVisible(true);

 target.add(label);

}

};

Please note that in the code above we didn't invoked method setOutputMarkupId(true) as
setOutputMarkupPlaceholderTag already does it internally.

16.3 Built-in AJAX behaviors
In addition to specific components, Wicket offers also a set of built in AJAX behaviors that can be used

to easily add AJAX functionalities to existing components. As we will see in this paragraph AJAX
behaviors can be used also to ajaxify components that weren't initially designed to work with this

Wicket free user guide 172

16 Working with AJAX

technology. All the following behaviors are inside package org.apache.wicket.ajax.

16.3.1 AjaxEventBehavior

AjaxEventBehavior allows to handle a JavaScript event (like click, change, etc...) on server side via
AJAX. Its constructor takes in input the name of the event that must be handled. Every time this event is
fired for a given component on client side, the callback method onEvent(AjaxRequestTarget
target) is executed. onEvent is abstract, hence we must implement it to tell AjaxEventBehavior
what to do when the specified event occurs.

In project AjaxEventBehaviorExample we used this behavior to build a “clickable” Label component
that counts the number of clicks. Here is the code from the home page of the project:

Html:

<body>

 <div wicket:id="clickCounterLabel"></div>

 User has clicked time/s on the label above.

</body>

Java code:

public class HomePage extends WebPage {

 public HomePage(final PageParameters parameters) {

 super(parameters);

 final ClickCounterLabel clickCounterLabel =

 new ClickCounterLabel("clickCounterLabel", "Click on me!");

 final Label clickCounter =

 new Label("clickCounter", new PropertyModel(clickCounterLabel, "clickCounter"));

 clickCounterLabel.setOutputMarkupId(true);

 clickCounterLabel.add(new AjaxEventBehavior("click"){

 @Override

 protected void onEvent(AjaxRequestTarget target) {

 clickCounterLabel.clickCounter++;

 target.add(clickCounter);

 }

 });

 add(clickCounterLabel);

 add(clickCounter.setOutputMarkupId(true));

 }

}

class ClickCounterLabel extends Label{

 public int clickCounter;

 public ClickCounterLabel(String id) {

 super(id);

 }

 public ClickCounterLabel(String id, IModel<?> model) {

Wicket free user guide 173

16 Working with AJAX

 super(id, model);

 }

 public ClickCounterLabel(String id, String label) {

 super(id, label);

 }

}

In the code above we have declared a custom label class named ClickCounterLabel that exposes
a public integer field called clickCounter. Then, in the home page we have attached a
AjaxEventBehavior to our custom label to increment clickCounter every time it receives a click
event.

The number of clicks is displayed with another standard label named clickCounter.

16.3.2 AjaxFormSubmitBehavior

This behavior allows to send a form via AJAX when the component it is attached to receives the
specified event. The component doesn't need to be inside the form if we use the constructor version
that, in addition to the name of the event, takes in input also the target form:

Form form = new Form("form");

Button submitButton = new Button("submitButton");

//submit form when button is clicked

submitButton.add(new AjaxFormSubmitBehavior(form, "click"){});

add(form);

add(submitButton);

16.3.3 AjaxFormComponentUpdatingBehavior

This behavior updates the model of the form component it is attached to when a given event occurs.
The standard form submitting process is skipped and the behavior validates only its form component.

The behavior doesn't work with radio buttons and checkboxes. For these kinds of components we must
use AjaxFormChoiceComponentUpdatingBehavior:

Form form = new Form("form");

TextField textField = new TextField("textField", Model.of(""));

//update the model of the text field each time event "change" occurs

textField.add(new AjaxFormComponentUpdatingBehavior("change"){

@Override

protected void onUpdate(AjaxRequestTarget target) {

//...

}

});

add(form.add(textField));

16.3.4 AbstractAjaxTimerBehavior

AbstractAjaxTimerBehavior executes callback method onTimer(AjaxRequestTarget
target) at a specified interval. The behavior can be stopped and restarted at a later time with methods
stop(AjaxRequestTarget target) and restart(AjaxRequestTarget target):

Label dynamicLabel = new Label("dynamicLabel");

Wicket free user guide 174

16 Working with AJAX

//trigger an AJAX request every three seconds

dynamicLabel.add(new AbstractAjaxTimerBehavior(Duration.seconds(3)) {

@Override

protected void onTimer(AjaxRequestTarget target) {

//...

}

});

add(dynamicLabel);

16.4 Using an activity indicator
One of the thing we must take care of when we use AJAX is to notify user when an AJAX request is

already in progress. This is usually done displaying an animated picture as activity indicator while the
AJAX request is running.

Wicket comes with a variant of components AjaxButton, AjaxLink and AjaxFallbackLink that
display a default activity indicator during AJAX request processing. These components are respectively
IndicatingAjaxButton, IndicatingAjaxLink and IndicatingAjaxFallbackLink.

The default activity indicator used in Wicket can be easily integrated in our components using behavior
AjaxIndicatorAppender (available in package org.apache.wicket.extensions.ajax.
markup.html) and implementing the interface IAjaxIndicatorAware (in package org.apache.
wicket.ajax).
IAjaxIndicatorAware declares method getAjaxIndicatorMarkupId() which returns the id of

the markup element used to display the activity indicator. This id can be obtained from the
AjaxIndicatorAppender behavior that has been added to the current component. The following
code snippet summarizes the steps needed to integrate the default activity indicator with an ajaxified
component:

//1-Implement interface IAjaxIndicatorAware

public class MyComponent extends Component implements IAjaxIndicatorAware {

//2-Instantiate an AjaxIndicatorAppender

private AjaxIndicatorAppender indicatorAppender =

new AjaxIndicatorAppender();

public MyComponent(String id, IModel<?> model) {

super(id, model);

//3-Add the AjaxIndicatorAppender to the component

add(indicatorAppender);

}

//4-Return the markup id obtained from AjaxIndicatorAppender

public String getAjaxIndicatorMarkupId() {

return indicatorAppender.getMarkupId();

}

//...

}

If we need to change the default picture used as activity indicator, we can override method
getIndicatorUrl() of AjaxIndicatorAppender and return the URL to the desired picture.

16.5 Ajax request attributes and call listeners
Starting from version 6.0 Wicket has introduced two entities which allow us to control how an AJAX

request is generated on client side and to specify the custom JavaScript code we want to execute during

Wicket free user guide 175

16 Working with AJAX

request handling. These entities are class AjaxRequestAttributes and interface
IAjaxCallListener, both placed in package org.apache.wicket.ajax.attributes.
AjaxRequestAttributes exposes the attributes used to generate the JavaScript call invoked on

client side to start an AJAX request. Each attribute will be passed as a JSON55 parameter to the
JavaScript function Wicket.Ajax.ajax which is responsible for sending the concrete AJAX request.
Every JSON parameter is identified by a short name. Here is a partial list of the available parameters:

Short name Description Default value

u The callback URL used to serve the AJAX request that will be sent.

c The id of the component that wants to start the AJAX call.

e A list of event (click, change, etc...) that can trigger the AJAX call. domready

m The request method that must be used (GET or POST). GET

f The id of the form that must be submitted with the AJAX call.

mp

If the AJAX call involves the submission of a form, this flag indicates

whether the data must be encoded using the encoding mode

“multipart/form-data”.

false

sc The input name of the submitting component of the form

async
A boolean parameter that indicates if the AJAX call is asynchronous

(true) or not.
true

wr
Specifies the type of data returned by the AJAX call (XML, HTML,

JSON, etc...).
XML

bh, pre, bsh,

ah, sh, fh,

coh

This is a list of the listeners that are executed on client side (they are

JavaScript scripts) during the lifecycle of an AJAX request. Each

short name is the abbreviation of one of the methods defined in the

interface IAjaxCallListener (see below).

An empty list

 Note

A full list of the available request parameters as well as more details on the
related JavaScript code can be found at https://cwiki.apache.org/confluence/
display/WICKET/Wicket+Ajax.

Parameters 'u' (callback URL) and 'c' (the id of the component) are generated by the AJAX behavior
that will serve the AJAX call and they are not accessible through AjaxRequestAttributes.

Here is the final AJAX function generate for the behavior used in example project AjaxEventBehavior
Example:

Wicket.Ajax.ajax({"u":"./?0-1.IBehaviorListener.0-clickCounterLabel","e":"click",
 "c":"clickCounterLabel1"});

Even if most of the times we will let Wicket generate request attributes for us, both AJAX components
and behaviors give us the chance to modify them overriding their method updateAjaxAttributes
(AjaxRequestAttributes attributes).

One of the attribute we may need to modify is the list of IAjaxCallListeners returned by method

55 http://en.wikipedia.org/wiki/JSON

Wicket free user guide 176

https://cwiki.apache.org/confluence/display/WICKET/Wicket+Ajax
https://cwiki.apache.org/confluence/display/
https://cwiki.apache.org/confluence/display
https://cwiki.apache.org/confluence/display
https://cwiki.apache.org/confluence/display/WICKET/Wicket+Ajax

16 Working with AJAX

getAjaxCallListeners().
IAjaxCallListener defines a set of methods which return the JavaScript code (as a
CharSequence) that must be executed on client side when the AJAX request handling reaches a given
stage:

• getBeforeHandler(Component): returns the JavaScript code that will be executed before any
other handlers returned by IAjaxCallListener.
The code is executed in a scope where it can use variable attrs, which is an array containing
the JSON parameters passed to Wicket.Ajax.ajax.

• getPrecondition(Component): returns the JavaScript code that will be used as precondition for
the AJAX call. If the script returns false then neither the Ajax call nor the other handlers will be
executed.
The code is executed in a scope where it can use variable attrs, which is the same variable
seen for getBeforeHandler.

• getBeforeSendHandler(Component): returns the JavaScript code that will be executed just
before the AJAX call is performed.
The code is executed in a scope where it can use variables attrs, jqXHR and settings:

- attrs is the same variable seen for getBeforeHandler.
- jqXHR is the the jQuery XMLHttpRequest object used to make the AJAX call.
- settings contains the settings used for calling jQuery.ajax().

• getAfterHandler(Component): returns the JavaScript code that will be executed after the
AJAX call.
The code is executed in a scope where it can use variable attrs, which is the same variable
seen before for getBeforeHandler.

• getSuccessHandler(Component): returns the JavaScript code that will be executed if the
AJAX call has successfully returned.
The code is executed in a scope where it can use variables attrs, jqXHR, data and textStatus:

- attrs and jqXHR are same variables seen for getBeforeSendHandler:
- data is the data returned by the AJAX call. Its type depends on parameter wr (Wicket
AJAX response).
- textStatus it's the status returned as text.

• getFailureHandler(Component): returns the JavaScript code that will be executed if the AJAX
call has returned with a failure.
The code is executed in a scope where it can use variable attrs, which is the same variable
seen for getBeforeHandler.

• getCompleteHandler(Component): returns the JavaScript that will be invoked after success or
failure handler has been executed.
The code is executed in a scope where it can use variables attrs, jqXHR and textStatus which
are the same variables seen for getSuccessHandler.

In the next paragraph we will see an example of custom IAjaxCallListener designed to disable a
component during AJAX request processing.

16.6 Creating custom AJAX call listener
Displaying an activity indicator is a nice way to notify user that an AJAX request is already running, but

sometimes is not enough. In some situations we may need to completely disable a component during
AJAX request processing, for example when we want to avoid that impatient users submit a form
multiple times. In this paragraph we will see how to accomplish this goal building a custom and reusable
IAjaxCallListener. The code used in this example is from project CustomAjaxListenerExample.

16.6.1 What we want for our listener

Wicket free user guide 177

16 Working with AJAX

The listener should execute some JavaScript code to disable a given component when the component
it is attached to is about to make an AJAX call. Then, when the AJAX request has been completed, the
listener should bring back the disabled component to an active state.

When a component is disabled it must be clear to user that an AJAX request is running and that he/she
must wait for it to complete. To achieve this result we want to disable a given component covering it with
a semi-transparent overlay area with an activity indicator in the middle.

The final result will look like this:

16.6.2 How to implement the listener

The listener will implement methods getBeforeHandler and getAfterHandler: the first will return
the code needed to place an overlay <div> on the desired component while the second must remove
this overlay when the AJAX call has completed.

To move and resize the overlay area we will use another module from JQueryUI library that allows us
to position DOM elements on our page relative to another element56.

So our listener will depend on four static resources: the JQuery library, the position module of JQuery
UI, the custom code used to move the overlay <div> and the picture used as activity indicator. Except for
the activity indicator, all these resources must be added to page header section in order to be used.

Ajax call listeners can contribute to header section by simply implementing interface
IComponentAwareHeaderContributor. Wicket provides adapter class AjaxCallListener that
implements both IAjaxCallListener and IComponentAwareHeaderContributor. We will use
this class as base class for our listener.

16.6.3 JavaScript code

Now that we know what to do on the Java side, let's have a look at the custom JavaScript code that
must be returned by our listener (file moveHiderAndIndicator.js):

DisableComponentListener = {

 disableElement: function(elementId, activeIconUrl){

 var hiderId = elementId + "-disable-layer";

 var indicatorId = elementId + "-indicator-picture";

 elementId = "#" + elementId;

 //create the overlay <div>

 $(elementId).after('<div id="' + hiderId

 + '" style="position:absolute;">'

 + ''

 + '</div>');

 hiderId = "#" + hiderId;

56 http://jqueryui.com/position/

Wicket free user guide 178

Illustration 16.6: The overlay area on a form (from project
CustomAjaxBehaviorExample)

http://jqueryui.com/position/

16 Working with AJAX

 //set the style properties of the overlay <div>

 $(hiderId).css('opacity', '0.8');

 $(hiderId).css('text-align', 'center');

 $(hiderId).css('background-color', 'WhiteSmoke');

 $(hiderId).css('border', '1px solid DarkGray');

 //set the dimention of the overlay <div>

 $(hiderId).width($(elementId).outerWidth());

 $(hiderId).height($(elementId).outerHeight());

 //positioning the overlay <div> on the component that must be disabled.

 $(hiderId).position({of: $(elementId),at: 'top left', my: 'top left'});

 //positioning the activity indicator in the middle of the overlay <div>

 $("#" + indicatorId).position({of: $(hiderId), at: 'center center',

 my: 'center center'});

 },

 //function hideComponent

Function DisableComponentListener.disableElement places the overlay <div> an the activity indicator
on the desired component. The parameters in input are the markup id of the component we want to
disable and the URL of the activity indicator picture. These two parameters must be provided by our
custom listener.

The rest of custom JavaScript contains function DisableComponentListener.hideComponent which is just
a wrapper around the JQuery function remove():

hideComponent: function(elementId){

var hiderId = elementId + "-disable-layer";

$('#' + hiderId).remove();

}

};

16.6.4 Class code

The code of our custom listener is the following:

public class DisableComponentListener extends AjaxCallListener {

 private static PackageResourceReference customScriptReference = new

 PackageResourceReference(DisableComponentListener.class,"moveHiderAndIndicator.js");

 private static PackageResourceReference jqueryUiPositionRef = new

 PackageResourceReference(DisableComponentListener.class, "jquery-ui-position.min.js");

 private static PackageResourceReference indicatorReference =

 new PackageResourceReference(DisableComponentListener.class, "ajax-loader.gif");

 private Component targetComponent;

 public DisableComponentListener(Component targetComponent){

 this.targetComponent = targetComponent;

 }

 @Override

 public CharSequence getBeforeHandler(Component component) {

 CharSequence indicatorUrl = getIndicatorUrl(component);

 return ";DisableComponentListener.disableElement('" + targetComponent.getMarkupId()

Wicket free user guide 179

16 Working with AJAX

 + "'," + "'" + indicatorUrl + "');";

 }

 @Override

 public CharSequence getCompleteHandler(Component component) {

 return ";DisableComponentListener.hideComponent('" + targetComponent.getMarkupId() +

 "');";

 }

 protected CharSequence getIndicatorUrl(Component component) {

 return component.urlFor(indicatorReference, null);

 }

 @Override

 public void renderHead(Component component, IHeaderResponse response) {

 ResourceReference jqueryReference = Application.get().getJavaScriptLibrarySettings().

 getJQueryReference();

 response.render(JavaScriptHeaderItem.forReference(jqueryReference));

 response.render(JavaScriptHeaderItem.forReference(jqueryUiPositionRef));

 response.render(JavaScriptHeaderItem.forReference(customScriptReference));

 }

}

As you can see in the code above we have created a function (getIndicatorUrl) to retrieve the
URL of the indicator picture. This was done in order to make the picture customizable by overriding this
method.

Once we have our listener in place, we can finally use it in our example overwriting method
updateAjaxAttributes of the AJAX button that submits the form:

//...

new AjaxButton("ajaxButton"){

@Override

protected void updateAjaxAttributes(AjaxRequestAttributes attributes) {

 super.updateAjaxAttributes(attributes);

 attributes.getAjaxCallListeners().add(new DisableComponentListener(form));

}

}

//...

16.6.5 Global listeners

So far we have seen how to use an AJAX call listener to track the AJAX activity of a single component.
In addition to these kinds of listeners, Wicket provides also global listeners which are triggered for any
AJAX request sent from a page.

Global AJAX call events are handled with JavaScript. We can register a callback function for a specific
event of the AJAX call lifecycle with function Wicket.Event.subscribe('<eventName>', <callback
Function>). The first parameter of this function is the name of the event we want to handle. The possible
names are:

• '/ajax/call/before': called before any other event handler.
• '/ajax/call/beforeSend': called just before the AJAX call.
• '/ajax/call/after': called after the AJAX request has been sent.
• '/ajax/call/success': called if the AJAX call has successfully returned.

Wicket free user guide 180

16 Working with AJAX

• '/ajax/call/failure': called if the AJAX call has returned with a failure.
• '/ajax/call/complete': called when the AJAX call has completed.
• '/dom/node/removing': called when a component is about to be removed via AJAX. This

happens when component markup is updated via AJAX (i.e. the component itself or one of its
containers has been added to AjaxRequestTarget)

• '/dom/node/added': called when a component has been added via AJAX. Just like
'/dom/node/removing', this event is triggered when a component is added to AjaxRequest
Target.

The callback function takes in input the following parameters: attrs, jqXHR, textStatus, jqEvent and
errorThrown. The first three parameters are the same seen before with IAjaxCallListener while
jqEvent is an event internally fired by Wicket. The last parameter errorThrown indicates if an error has
occurred during the AJAX call.

To see a basic example of use of a global AJAX call listener, let's go back to our custom datepicker
created in chapter 14. When we built it we didn't think about a possible use of the component with AJAX.
When a complex component like our datepicker is refreshed via AJAX, the following two side effects can
occur:

• After been refreshed, the component loses every JavaScript handler set on it. This is not a
problem for our datepicker as it sets a new JQuery datepicker every time is rendered (inside
method renderHead).

• The markup previously created with JavaScript is not removed. For our datepicker this means
that the icon used to open the calendar won't be removed while a new one will be added each
time the component is refreshed.

To solve the second unwanted side effect we can register a global AJAX call listener that completely
removes the datepicker functionality from our component before it is removed due to an AJAX refresh
(which fires event '/dom/node/removing').

Project CustomDatepickerAjax contains a new version of our datepicker which adds to its JavaScript
file JQDatePicker.js the code needed to register a callback function that gets rid of the JQuery
datepicker before the component is removed from the DOM:

Wicket.Event.subscribe('/dom/node/removing',

 function(jqEvent, attributes, jqXHR, errorThrown, textStatus) {

var componentId = '#' + attributes['id'];

if($(componentId).datepicker !== undefined)

 $(componentId).datepicker('destroy');

 }

);

The code above retrieves the id of the component that is about to be removed using parameter
attributes. Then it checks if a JQuery datepicker was defined for the given component and if so, it
removes the widget calling function destroy.

16.7 Summary
AJAX is another example of how Wicket can simplify web technologies providing a good component

and object oriented abstraction of them.
In this chapter we have seen how to take advantage of the AJAX support provided by Wicket to write

AJAX-enhanced applications. Most of the chapter has been dedicated to the built-in components and
behaviors that let us adopt AJAX without almost any effort.

In the final part of the chapter we have seen how Wicket physically implements an AJAX call on client

Wicket free user guide 181

16 Working with AJAX

side using AJAX request attributes. Then, we have learnt how to use call listeners to execute custom
JavaScript during AJAX request lifecycle.

Wicket free user guide 182

17 Working with WebSocket

17 Working with WebSocket

WebSocket is a new standard technology defined by HTML 5. It allows to establish a full-duplex (or
bidirectional) communication channel between server and a single web page (using a single TCP
connection).

17.1 Native WebSocket support

17.2 Using WebSocket with Atmosphere

17.3 An outlook to JSR 356

Wicket free user guide 183

18 Integration with enterprise containers

18 Integration with enterprise
containers

Writing a web application is not just about producing a good layout and a bunch of “cool” pages. We
must also integrate our presentation code with enterprise resources like data sources, message queues,
business objects, etc...

The first decade of 2000s has seen the rising of new frameworks (like Spring57) and new specifications
(like EJB 3.158) aimed to simplify the management of enterprise resources and (among other things)
their integration with presentation code.

All these new technologies are based on the concepts of container and dependency injection.
Container is the environment where our enterprise resources are created and configured while
dependency injection59 is a pattern implemented by containers to inject into an object the resources it
depends on.

Wicket can be easily integrated with enterprise containers using component instantiation listeners.
These entities are instances of interface org.apache.wicket.application.IComponent
InstantiationListener and can be registered during application's initialization.
IComponentInstantiationListener defines callback method onInstantiation(Component
component) which can be used to provide custom instantiation logic for Wicket components.

Wicket distribution and project WicketStuff60 already provide a set of built-in listeners to integrate our
applications with EJB 3.1 compliant containers (like JBoss Seam61) or with some of the most popular
enterprise frameworks like Guice62 or Spring.

In this chapter we will see two basic examples of injecting a container-defined object into a page using
first an implementation of the EJB 3.1 specifications (project OpenEJB63) and then using Spring.

18.1 Integrating Wicket with EJB
WicketStuff provides a module called wicketstuff-javaee-inject that contains component

instantiation listener JavaEEComponentInjector. If we register this listener in our application we can
use standard EJB annotations to inject dependencies into our Wicket components.

To register a component instantiation listener in Wicket we must use Application's method
getComponentInstantiationListeners which returns a typed collection of IComponent
InstantiationListeners.

The following initialization code is taken from project EjbInjectionExample:

public class WicketApplication extends WebApplication

{

 //Constructor...

@Override

public void init()

57 http://www.springsource.org/
58 http://en.wikipedia.org/wiki/Enterprise_JavaBeans
59 http://en.wikipedia.org/wiki/Dependency_Injection
60 https://github.com/wicketstuff An overview of WicketStuff project is available in Appendix B
61 Seam has its own integration module for Wicket, but it is stuck on Wicket version 1.4
62 http://code.google.com/p/google-guice/
63 http://openejb.apache.org/

Wicket free user guide 184

http://openejb.apache.org/
http://code.google.com/p/google-guice/
https://github.com/wicketstuff
http://en.wikipedia.org/wiki/Dependency_Injection
http://en.wikipedia.org/wiki/Enterprise_JavaBeans
http://www.springsource.org/

18 Integration with enterprise containers

{

super.init();

getComponentInstantiationListeners().add(new JavaEEComponentInjector(this));

}

}

In this example the object that we want to inject is a simple class containing a greeting message:

@ManagedBean

public class EnterpriseMessage {

public String message = "Welcome to the EJB world!";

}

Please note that we have used annotation @ManagedBean to decorate our object. Now to inject it into
the home page we must add a field of type EnterpriseMessage and annotate it with annotation @EJB:

public class HomePage extends WebPage {

@EJB

private EnterpriseMessage enterpriseMessage;

//getter and setter for enterpriseMessage...

public HomePage(final PageParameters parameters) {

super(parameters);

add(new Label("message", enterpriseMessage.message));

}

}

That is all. We can point the browser to the home page of the project and see the greeting message
injected into the page:

18.2 Integrating Wicket with Spring
If we need to inject dependencies with Spring we can use listener org.apache.wicket.spring.
injection.annot.SpringComponentInjector provided by module wicket-spring.

For the sake of simplicity in the example project SpringInjectionExample we have used Spring class
AnnotationConfigApplicationContext to avoid any XML file and create a Spring context directly
from code:

public class WicketApplication extends WebApplication

{

 //Constructor...

Wicket free user guide 185

18 Integration with enterprise containers

 @Override

 public void init()

 {

 super.init();

 AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();

 //Scan package for annotated beans

 ctx.scan("org.wicketTutorial.ejbBean");

 ctx.refresh();

 getComponentInstantiationListeners().add(new SpringComponentInjector(this, ctx));

 }

}

As we can see in the code above, the constructor of SpringComponentInjector takes in input also
an instance of Spring context.

The injected object is the same used in the previous project EjbInjectionExample, it differs only for the
greeting message:

@ManagedBean

public class EnterpriseMessage {

public String message = "Welcome to the Spring world!";

}

In the home page of the project the object is injected using Wicket annotation @SpringBean:

public class HomePage extends WebPage {

 @SpringBean

 private EnterpriseMessage enterpriseMessage;

 //getter and setter for enterpriseMessage...

 public HomePage(final PageParameters parameters) {

 super(parameters);

add(new Label("message", enterpriseMessage.message));

 }

}

By default @SpringBean searches into Spring context for a bean having the same type of the annotated
field. If we want we can specify also the name of the bean to use as injected object and we can declare
if the dependency is required or not. By default dependencies are required and if they can not be
resolved to a compatible bean, Wicket will throw an IllegalStateException:

 //set the dependency as not required, i.e the field can be left null

 @SpringBean(name="anotherName", required=false)

 private EnterpriseMessage enterpriseMessage;

18.3 JSR-33064 annotations
Spring (and Guice) users can use standard JSR-330 annotations to wire their dependencies. This will

make their code more interoperable with other containers that support this standard:

64 http://jcp.org/en/jsr/detail?id=330

Wicket free user guide 186

http://jcp.org/en/jsr/detail?id=330

18 Integration with enterprise containers

 //inject a bean specifying its name with JSR-330 annotations

 @Inject @Named("anotherName")

 private EnterpriseMessage enterpriseMessage;

18.4 Summary
In this chapter we have seen how to integrate Wicket applications with Spring and with an EJB

container. Module wicket-examples contains also an example of integration with Guice (see application
class org.apache.wicket.examples.guice.GuiceApplication).

Wicket free user guide 187

19 Security with Wicket

19 Security with Wicket

Security is one of the most important non-functional requirements we must implement in our
applications. This is particularly true for enterprise applications as they usually support multiple
concurrent users, and therefore they need to have an access control policy.

In this chapter we will explore the security infrastructure provided by Wicket and we will learn how to
use it to implement authentication and authorizations in our web applications.

19.1 Authentication
The first step in implementing a security policy is assigning a trusted identity to our users, which means

that we must authenticate them. Web applications usually adopt a form-based authentication with a
login form that asks user for a unique username and the relative password:

Wicket supports form-based authentication with session class AuthenticatedWebSession and
application class AuthenticatedWebApplication, both placed inside package org.apache.
wicket.authroles.authentication.

19.1.1 AuthenticatedWebSession

Class AuthenticatedWebSession comes with the following set of public methods to manage user
authentication:

• authenticate(String username, String password): this is an abstract method that must be
implemented by every subclass of AuthenticatedWebSession. It should contain the actual
code that checks for user's identity. It returns a boolean value which is true if authentication
has succeeded or false otherwise.

• signIn(String username, String password): this method internally calls authenticate and
set the flag signedIn to true if authentication succeeds.

• isSignedIn():getter method for flag signedIn.
• signOut(): sets the flag signedIn to false.

• invalidate(): calls signOut and invalidates session.

Warning

Remember that signOut does not discard any session-relative data. If we want
to get rid of these data, we must invoke method invalidate instead of
signOut.

Wicket free user guide 188

Illustration 19.1: Login form from Wikipedia

19 Security with Wicket

Another abstract method we must implement when we use AuthenticatedWebSession is
getRoles which is inherited from parent class AbstractAuthenticatedWebSession. This method
can be ignored for now as it will be discussed later when we will talk about role-based authorization.

19.1.2 AuthenticatedWebApplication

Class AuthenticatedWebApplication provides the following methods to support form-based
authentication:

• getWebSessionClass(): abstract method that returns the session class to use for this
application. The returned class must be a subclass of AbstractAuthenticatedWeb
Session.

• getSignInPageClass(): abstract method that returns the page to use as sign in page when a
user must be authenticated.

• restartResponseAtSignInPage(): forces the current response to restart at the sign in page.
After we have used this method to redirect a user, we can make her/him return to the original
page calling Componet's method continueToOriginalDestination().

The other methods implemented inside AuthenticatedWebApplication will be introduced when
we will talk about authorizations.

19.1.3 A basic example of authentication.

Project BasicAuthenticationExample is a basic example of form-based authentication implemented with
classes AuthenticatedWebSession and AuthenticatedWebApplication.

The homepage of the project contains only a link to page AuthenticatedPage which can be
accessed only if user is signed in. The code of AuthenticatedPage is this following:

public class AuthenticatedPage extends WebPage {

 @Override

 protected void onConfigure() {

 AuthenticatedWebApplication app = (AuthenticatedWebApplication)Application.get();

 //if user is not signed in, redirect him to sign in page

 if(!AuthenticatedWebSession.get().isSignedIn())

 app.restartResponseAtSignInPage();

 }

 @Override

 protected void onInitialize() {

 super.onInitialize();

 add(new Link("goToHomePage") {

 @Override

 public void onClick() {

 setResponsePage(getApplication().getHomePage());

 }

 });

 add(new Link("logOut") {

 @Override

 public void onClick() {

 AuthenticatedWebSession.get().invalidate();

 setResponsePage(getApplication().getHomePage());

 }

Wicket free user guide 189

19 Security with Wicket

 });

 }

}

Page AuthenticatedPage checks inside onConfigure if user is signed in and if not, it redirects
her/him to the sign in page with method restartResponseAtSignInPage. The page contains also a
link to the homepage and another link that signs out user.

The sign in page is implemented in class SignInPage and contains the form used to authenticate
users:

public class SignInPage extends WebPage {

 private String username;

 private String password;

 @Override

 protected void onInitialize() {

 super.onInitialize();

 StatelessForm form = new StatelessForm("form"){

 @Override

 protected void onSubmit() {

 if(Strings.isEmpty(username))

 return;

 boolean authResult = AuthenticatedWebSession.get().signIn(username, password);

 //if authentication succeeds redirect user to the requested page

 if(authResult)

 continueToOriginalDestination();

 }

 };

 form.setDefaultModel(new CompoundPropertyModel(this));

 form.add(new TextField("username"));

 form.add(new PasswordTextField("password"));

 add(form);

 }

}

The form is responsible for handling user authentication inside its method onSubmit. The username
and password are passed to AuthenticatedWebSession's method signIn(username,
password) and if authentication succeeds, the user is redirected to the original page with method
continueToOriginalDestination.

The session class and the application class used in the project are reported here:

Session class:

public class BasicAuthenticationSession extends AuthenticatedWebSession {

public BasicAuthenticationSession(Request request) {

super(request);

}

Wicket free user guide 190

19 Security with Wicket

@Override

public boolean authenticate(String username, String password) {

 //user is authenticated if both username and password are equal to 'wicketer'

return username.equals(password) && username.equals("wicketer");

}

@Override

public Roles getRoles() {

return null;

}

}

Application class:

public class WicketApplication extends AuthenticatedWebApplication{

@Override

public Class<HomePage> getHomePage(){

return HomePage.class;

}

@Override

protected Class<? extends AbstractAuthenticatedWebSession> getWebSessionClass(){
return BasicAuthenticationSession.class;

}

@Override

protected Class<? extends WebPage> getSignInPageClass() {

return SignInPage.class;

}

}

The authentication logic inside authenticate has been kept quite trivial in order to make the code as

clean as possible. Please note also that session class must have a constructor that accepts an instance
of class Request.

19.1.4 Redirecting user to an intermediate page

Method restartResponseAtSignInPage is an example of redirecting user to an intermediate page
before allowing him to access to the requested page. This method internally throws exception
org.apache.wicket.RestartResponseAtInterceptPageException which saves the URL of
the requested page into session metadata and then redirects user to the page passed as constructor
parameter (the sign in page).
Component's method redirectToInterceptPage(Page) works in much the same way as
restartResponseAtSignInPage but it allows us to specify which page to use as intermediate page:

redirectToInterceptPage(intermediatePage);

 Note

Since both restartResponseAtSignInPage and redirectToIntercept
Page internally throw an exception, the code placed after them will not be
executed.

Wicket free user guide 191

19 Security with Wicket

19.2 Authorizations
The authorization support provided by Wicket is built around the concept of authorization strategy

which is represented by interface IAuthorizationStrategy (in package org.apache.wicket
.authorization):

public interface IAuthorizationStrategy

{

 //interface methods

 <T extends IRequestableComponent> boolean isInstantiationAuthorized(Class<T>
componentClass);

 boolean isActionAuthorized(Component component, Action action);

 //default authorization strategy that allows everything

 public static final IAuthorizationStrategy ALLOW_ALL = new IAuthorizationStrategy()

 {

 @Override

 public <T extends IRequestableComponent> boolean isInstantiationAuthorized(final
Class<T> c)

 {

 return true;

 }

 @Override

 public boolean isActionAuthorized(Component c, Action action)

 {

 return true;

 }

 };

}

This interface defines two methods:
• isInstantiationAuthorized checks if user is allowed to instantiate a given component.
• isActionAuthorized checks if user is authorized to perform a given action on a component's

instance. The standard actions checked by this method are defined into class Action and are
Action.ENABLE and Action.RENDER.

Inside IAuthorizationStrategy we can also find a default implementation of the interface (called
ALLOW_ALL) that allows everyone to instantiate every component and perform every possible action on it.
This is the default strategy adopted by class Application.

To change the authorization strategy in use we must register the desired implementation into security
settings (interface ISecuritySettings) during initialization phase with method setAuthorization
Strategy:

 //Application class code...

 @Override

 public void init()

 {

 super.init();

 getSecuritySettings().setAuthorizationStrategy(myAuthorizationStrategy);

 }

//...

If we want to combine the action of two or more authorization strategies we can chain them with

Wicket free user guide 192

19 Security with Wicket

strategy CompoundAuthorizationStrategy which implements composite patter for authorization
strategies65.

Most of the times we won't need to implement an IAuthorizationStrategy from scratch as Wicket
already comes with a set of built-in strategies. In the next paragraphs we will see some of these
strategies that can be used to implement an effective and flexible security policy.

19.2.1 SimplePageAuthorizationStrategy

Abstract class SimplePageAuthorizationStrategy (in package org.apache.wicket.
authorization.strategies.page) is a strategy that checks user authorizations calling abstract
method isAuthorized only for those pages that are subclasses of a given supertype. If
isAuthorized returns false, the user is redirected to the sign in page specified as second
constructor parameter:

SimplePageAuthorizationStrategy authorizationStrategy = new SimplePageAuthorizationStrategy(

 PageClassToCheck.class, SignInPage.class)

{

 protected boolean isAuthorized()

 {

 //Authentication code...

 }

};

By default SimplePageAuthorizationStrategy checks for permissions only on pages. If we want
to change this behavior and check also other kinds of components, we must override method
isActionAuthorized and implement our custom logic inside it.

19.2.2 Role-based strategies

At the end of paragraph 19.1.1 we have introduced AbstractAuthenticatedWebSession's
method getRoles which is provided to support role-based authorization returning the set of roles
granted to the current user.

In Wicket roles are simple strings like “BASIC_USER” or “ADMIN” (they don't need to be capitalized)
and they are handled with class org.apache.wicket.authroles.authorization.strategies.
role.Roles. This class extends standard HashSet collection adding some functionalities to check
whether the set contains one or more roles. Class Roles already defines roles Roles.USER and
Roles.ADMIN.

The session class in the following example returns a custom “SIGNED_IN” role for every authenticated
user and it adds an Roles.ADMIN role if username is equal to superuser:

class BasicAuthenticationRolesSession extends AuthenticatedWebSession {

private String userName;

public BasicAuthenticationRolesSession(Request request) {

super(request);

}

@Override

public boolean authenticate(String username, String password) {

boolean authResult= false;

authResult = //some authentication logic...

65 On page 49 we have seen the same pattern implemented by RequestCycleListenerCollection for request cycle listeners .

Wicket free user guide 193

19 Security with Wicket

if(authResult)

userName = username;

return authResult;

}

@Override

public Roles getRoles() {

Roles resultRoles = new Roles();

if(isSignedIn())

resultRoles.add("SIGNED_IN");

if(userName.equals("superuser"))

resultRoles.add(Roles.ADMIN);

return resultRoles;

}

}

Roles can be adopted to apply security restrictions on our pages and components. This can be done
using one of the two built-in authorization strategies that extend super class AbstractRole
AuthorizationStrategyWicket: MetaDataRoleAuthorizationStrategy and Annotations
RoleAuthorizationStrategy

The difference between these two strategies is that MetaDataRoleAuthorizationStrategy
handles role-based authorizations with Wicket metadata while AnnotationsRoleAuthorization-
Strategy uses Java annotations.

 Note

Application class AuthenticatedWebApplication already sets MetaData
RoleAuthorizationStrategy and AnnotationsRoleAuthorization
Strategy as its own authorization strategies (it uses a compound strategy as
we will see in paragraph 19.2.4).
The code that we will see in the next examples is for illustrative purpose only. If
our application class inherits from AuthenticatedWebApplication we won't
need to configure anything to use these two strategies.

19.2.2.1 Using roles with metadata
Strategy MetaDataRoleAuthorizationStrategy uses application and components metadata to

implement role-based authorizations. The class defines a set of static methods authorize that can be
used to specify which roles are allowed to instantiate a component and which roles can perform a given
action on a component.

The following code snippet reports both application and session classes from project
MetaDataRolesStrategyExample and illustrates how to use MetaDataRoleAuthorizationStrategy
to allow access to a given page (AdminOnlyPage) only to ADMIN role:

Application class:

public class WicketApplication extends AuthenticatedWebApplication{

 @Override

 public Class<? extends WebPage> getHomePage(){

Wicket free user guide 194

19 Security with Wicket

 return HomePage.class;

 }

 @Override

 protected Class<? extends AbstractAuthenticatedWebSession> getWebSessionClass() {

 return BasicAuthenticationSession.class;

 }

 @Override

 protected Class<? extends WebPage> getSignInPageClass() {

 return SignInPage.class;

 }

 @Override

 public void init(){

 getSecuritySettings().setAuthorizationStrategy(new MetaDataRoleAuthorizationStrategy

 (this));

 MetaDataRoleAuthorizationStrategy.authorize(AdminOnlyPage.class, Roles.ADMIN);

 }

}

Session class:

public class BasicAuthenticationSession extends AuthenticatedWebSession {

 private String username;

 public BasicAuthenticationSession(Request request) {

 super(request);

 }

 @Override

 public boolean authenticate(String username, String password) {

 //user is authenticated if username and password are equal

 boolean authResult = username.equals(password);

 if(authResult)

 this.username = username;

 return authResult;

 }

 public Roles getRoles() {

 Roles resultRoles = new Roles();

 //if user is signed in add the relative role

 if(isSignedIn())

 resultRoles.add("SIGNED_IN");

 //if username is equal to 'superuser' add the ADMIN role

 if(username!= null && username.equals("superuser"))

 resultRoles.add(Roles.ADMIN);

 return resultRoles;

 }

 @Override

Wicket free user guide 195

19 Security with Wicket

 public void signOut() {

 super.signOut();

 username = null;

 }

}

The code that instantiates MetaDataRoleAuthorizationStrategy and set it as application's
strategy is inside application class method init.

Any subclass of AbstractRoleAuthorizationStrategyWicket needs an implementation of
interface IRoleCheckingStrategy to be instantiated. For this purpose in the code above we used
the application class itself because its base class AuthenticatedWebApplication already
implements interface IRoleCheckingStrategy. By default AuthenticatedWebApplication
checks for authorizations using the roles returned by the current AbstractAuthenticated
WebSession. As final step inside init we grant the access to page AdminOnlyPage to ADMIN role
calling method authorize.

The code from session class has three interesting methods. The first is authenticate which
considers as valid credentials every pair of username and password having the same value. The second
notable method is getRoles which returns role SIGNED_IN if user is authenticated and it adds role
ADMIN if username is equal to superuser. Finally, we have method signOut which has been
overridden in order to clean the username field used internally to generate roles.

Now if we run the project and we try to access to AdminOnlyPage from the home page without having
the ADMIN role, we will be redirected to the default access-denied page used by Wicket:

The access-denied page can be customized using method setAccessDeniedPage(Class<?
extends Page>) of setting interface IApplicationSettings:

 //Application class code...

 @Override

 public void init(){

 getApplicationSettings().setAccessDeniedPage(MyCustomAccessDeniedPage.class);

 }

Just like custom “Page expired” page (see chapter 6.2.5), also custom “Access denied” page must be
bookmarkable.

19.2.2.2 Using roles with annotations
Strategy AnnotationsRoleAuthorizationStrategy relies on two built-in annotations to handle

role-based authorizations. These annotations are AuthorizeInstantiation and Authorize
Action. As their names suggest the first annotation specifies which roles are allowed to instantiate the
annotated component while the second must be used to indicate which roles are allowed to perform a
specific action on the annotated component.

In the following example we use annotations to make a page accessible only to signed-in users and to
enable it only if user has the ADMIN role:

Wicket free user guide 196

19 Security with Wicket

@AuthorizeInstantiation("SIGNED_IN")

@AuthorizeAction(action = "ENABLE", roles = {"ADMIN"})

public class MyPage extends WebPage {

 //Page class code...

}

Remember that when a component is not enabled, user can render it but he can neither click on its
links nor interact with its forms.

Example project AnnotationsRolesStrategyExample is a revisited version of MetaDataRolesStrategy
Example where we use AnnotationsRoleAuthorizationStrategy as authorization strategy. To
ensure that page AdminOnlyPage is accessible only to ADMIN role we have used the following
annotation:

@AuthorizeInstantiation("ADMIN")

public class AdminOnlyPage extends WebPage {

 //Page class code...

}

19.2.3 Catching an unauthorized component instantiation

Interface IUnauthorizedComponentInstantiationListener (in package org.apache.
wicket.authorization) is provided to give the chance to handle the case in which a user tries to
instantiate a component without having the permissions to do it. The method defined inside this interface
is onUnauthorizedInstantiation(Component) and it is executed whenever a user attempts to
execute an unauthorized instantiation.

This listener must be registered into application's security settings with method setUnauthorized
ComponentInstantiationListener defined by setting interface ISecuritySettings. In the
following code snippet we register a listener that redirect user to a warning page if he tries to do a not-
allowed instantiation:

public class WicketApplication extends AuthenticatedWebApplication{

 //Application code...

 @Override

 public void init(){

 getSecuritySettings().setUnauthorizedComponentInstantiationListener(

new IUnauthorizedComponentInstantiationListener() {

 @Override

 public void onUnauthorizedInstantiation(Component component) {

 component.setResponsePage(AuthWarningPage.class);

 }

 });

 }

}

In addition to interface IRoleCheckingStrategy, class AuthenticatedWebApplication
implements also IUnauthorizedComponentInstantiationListener and registers itself as
listener for unauthorized instantiations.

By default AuthenticatedWebApplication redirects users to sign-in page if they are not signed-in
and they try to instantiate a restricted component. Otherwise, if users are already signed in but they are

Wicket free user guide 197

19 Security with Wicket

not allowed to instantiate a given component, an UnauthorizedInstantiationException will be
thrown.

19.2.4 Strategy RoleAuthorizationStrategy

Class RoleAuthorizationStrategy is a compound strategy that combines both MetaData
RoleAuthorizationStrategy and AnnotationsRoleAuthorizationStrategy.

This is the strategy used internally by AuthenticatedWebApplication.

19.3 Using HTTPS protocol
HTTPS is the standard technology adopted on Internet to create a secure communication channel

between web applications and their users.
In Wicket we can easily protect our pages with HTTPS mounting a special request mapper called
HttpsMapper and using annotation RequireHttps with those pages we want to serve over this
protocol. Both these two entities are in package org.apache.wicket.protocol.https.
HttpsMapper wraps an existing mapper and redirects incoming requests to HTTPS if the related

response must render a page containing annotation RequireHttps. Most of the times the wrapped
mapper will be the root one, just like we saw before for CryptoManager in paragraph 8.6.6.

Another parameter needed to build a HttpsMapper is an instance of class HttpsConfig. This class
allows us to specify which ports must be used for HTTPS and HTTP. By default the port numbers used
by these two protocols are respectively 443 and 80.

The following code is taken from project HttpsProtocolExample and illustrates how to enable HTTPS
in our applications:

//Application class code...

@Override

public void init(){

 setRootRequestMapper(new HttpsMapper(getRootRequestMapper(),

 new HttpsConfig(8080, 443)));

}

Now we can use annotation RequireHttps to specify which pages must be served using HTTPS:

@RequireHttps

public class HomePage extends WebPage {

 public HomePage(final PageParameters parameters) {

 super(parameters);

 }

}

If we want to protect many pages with HTTPS without adding annotation RequireHttps to each of
them, we can annotate a marker interface or a base page class and implement/extend it in any page we
want to make secure:

Marker interface:

@RequireHttps

public interface IMarker{

}

Base class:

Wicket free user guide 198

19 Security with Wicket

@RequireHttps

public class BaseClass extends WebPage{

//Page code...

}

Secure page inheriting from BaseClass:
public class HttpsPage extends BaseClass{

//Page code...

}

Secure page implementing IMarker:
public class HttpsPage implements IMarker{

//Page code...

}

19.4 Package Resource Guard
Wicket internally uses an entity called package resource guard to protect package resources from

external access. This entity is an implementation of interface org.apache.wicket.markup.html.
IPackageResourceGuard.

By default Wicket applications use as package resource guard class SecurePackageResource
Guard, which allows to access only to the following file extensions (grouped by type):

JavaScript files *.js

Css files *.css

HTML pages *.html

Textual files *.txt

Flash files *.swf

Picture files *.png, *.jpg, *.jpeg, *.gif, *.ico, *.cur, *.bmp, *.svg

To modify the set of allowed files formats we can add one or more patterns with method addPattern
(String). The rules to write a pattern are the following:

• patterns start with either a "+" or a "-". In the first case the pattern will add one or more file to the
set while starting a pattern with a “-” we exclude all the files matching the given pattern. For
example pattern “-web.xml” excludes all web.xml files in all directories.

• wildcard character “*” is supported as placeholder for zero or more characters. For example
pattern “+*.mp4” adds all the mp4 files inside all directories.

• subdirectories are supported as well. For example pattern “+documents/*.pdf” adds all pdf files
under “documents” directory. Character “*” can be used with directories to specify a nesting
level. For example “+documents/*/*.pdf” adds all pdf files placed one level below “documents”
directory.

• a double wildcard character “**” indicates zero or more subdirectories. For example patter
“+documents/**/*.pdf” adds all pdf files placed inside “documents” directory or inside any of its
subdirectories.

Patterns that allow to access to every file with a given extensions (such as “+*.pdf”) should be always
avoided in favour of more restrictive expressions that contain a directory structure:

Wicket free user guide 199

19 Security with Wicket

//Application class code...

@Override

public void init()

{

 IPackageResourceGuard packageResourceGuard = application.getResourceSettings()

 .getPackageResourceGuard();

 if (packageResourceGuard instanceof SecurePackageResourceGuard)

 {

 SecurePackageResourceGuard guard = (SecurePackageResourceGuard) packageResourceGuard;

 //Allow to access only to pdf files placed in the “public” directory.

 guard.addPattern("+public/*.pdf");

 }

}

19.5 Summary
 In this chapter we have seen the components and the mechanisms that allow us to implement security

policies in our Wicket-based applications. Wicket comes with an out of the box support for both
authorization and authentication.

The central element of authorization mechanism is the interface IAuthorizationStrategy which
decouples our components from any detail about security strategy. The implementations of this interface
must decide if a user is allowed to instantiate a given page or component and if she/he can perform a
given action on it.

Wicket natively supports role-based authorizations with strategies MetaDataRoleAuthorization
Strategy and AnnotationsRoleAuthorizationStrategy. The difference between these two
strategies is that the first offers a programmatic approach for role handling while the second promotes a
declarative approach using built-in annotations.

After having explored how Wicket internally implements authentication and authorization, in the last
part of the chapter we have learnt how to configure our applications to support HTTPS and how to
specify which pages must be served over this protocol.

In the last paragraph we have seen how Wicket protects package resources with a guard entity that
allows us to decide which package resources can be accessed from users.

Wicket free user guide 200

20 Test Driven Development with Wicket

20 Test Driven Development with
Wicket

Test Driven Development66 has become a crucial activity for every modern development methodology.
This chapter will cover the built-in support for testing provided by Wicket with its rich set of helper and
mock classes that allows us to test our components and our applications in isolation (i.e without the
need for a servlet container) using JUnit, the de facto standard for Java unit testing.

In this chapter we will see how to write unit tests for our applications and components and we will learn
how to use helper classes to simulate user navigation and write acceptance tests without the need of
any testing framework other than JUnit.

The JUnit version used in this chapter is 4.x.

20.1 Utility class WicketTester
A good way to start getting confident with Wicket unit testing support is looking at the test case class
TestHomePage that is automatically generated by Maven when we use Wicket archetype to create a
new project:

Here is the content of TestHomePage:

public class TestHomePage{

private WicketTester tester;

@Before

public void setUp(){

tester = new WicketTester(new WicketApplication());

}

@Test

public void homepageRendersSuccessfully(){

//start and render the test page

tester.startPage(HomePage.class);

//assert rendered page class

tester.assertRenderedPage(HomePage.class);

}

}

The central class in a Wicket testing is org.apache.wicket.util.tester.WicketTester. This

66 http://en.wikipedia.org/wiki/Test-driven_development

Wicket free user guide 201

http://en.wikipedia.org/wiki/Test-driven_development

20 Test Driven Development with Wicket

utility class provides a set of methods to render a component, click links, check if page contains a given
component or a feedback message, and so on.

The basic test case shipped with TestHomePage illustrates how WicketTester is typically
instantiated (inside method setUp()). In order to test our components, WicketTester needs to use
an instance of WebApplication. Usually, we will use our application class as WebApplication, but
we can also decide to build WicketTester invoking its no-argument constructor and letting it
automatically build a mock web application (an instance of class org.apache.wicket.mock.
MockApplication).

 The code from TestHomePage introduces two basic methods to test our pages. The first is method
startPage that renders a new instance of the given page class and sets it as current rendered page
for WicketTester. The second method is assertRenderedPage which checks if the current
rendered page is an instance of the given class. In this way if TestHomePage succeeds we are sure
that page HomePage has been rendered without any problem. The last rendered page can be retrieved
with method getLastRenderedPage.

That's only a taste of what WicketTester can do. In the next paragraphs we will see how it can be
used to test every element that composes a Wicket page (links, models, behaviors, etc...).

20.1.1 Testing links

A click on a Wicket link can be simulated with method clickLink which takes in input the link
component or the page-relative path to it.

To see an example of usage of clickLink, let's consider again project LifeCycleStagesRevisited. As
we know from chapter 5 the home page of the project alternately displays two different labels (“First
label” and “Second label”), swapping between them each time button "reload" is clicked. The code from
its test case checks that label has actually changed after button "reload" has been pressed:

//...

@Test

public void switchLabelTest(){

//start and render the test page

tester.startPage(HomePage.class);

//assert rendered page class

tester.assertRenderedPage(HomePage.class);

//assert rendered label

tester.assertLabel("label", "First label");

//simulate a click on "reload" button

tester.clickLink("reload");

//assert rendered label

tester.assertLabel("label", "Second label");

}

//...

In the code above we have used clickLink to click on the "reload" button and force page to be
rendered again. In addition, we have used also method assertLabel that checks if a given label
contains the expected text.

By default clickLink assumes that AJAX is enabled on client side. To switch AJAX off we can use
another version of this method that takes in input the path to the link component and a boolean flag that
indicates if AJAX must be enabled (true) or not (false).

//...

//simulate a click on a button without AJAX support

tester.clickLink("reload", false);

Wicket free user guide 202

20 Test Driven Development with Wicket

//...

20.1.2 Testing component status

WicketTester provides also a set of methods to test the states of a component. They are:
• assertEnabled(String path)/assertDisabled(String path): they test if a component is enabled

or not.
• assertVisible(String path)/assertInvisible(String path): they test component visibility.
• assertRequired(String path): checks if a form component is required.

In the test case from project CustomDatepickerAjax we used assertEnabled/assertDisabled to
check if button "update" really disables our datepicker:

//...

@Test

public void testDisableDatePickerWithButton(){

//start and render the test page

tester.startPage(HomePage.class);

//assert that datepicker is enabled

tester.assertEnabled("form:datepicker");

//click on update button to disable datepicker

tester.clickLink("update");

//assert that datepicker is disabled

tester.assertDisabled("form:datepicker");

}

//...

20.1.3 Testing components in isolation

Method startComponent(Component) can be used to test a component in isolation without having
to create a container page for this purpose. The target component is rendered and both its methods
onInitialize() and onBeforeRender() are executed. In the test case from project
CustomFormComponentPanel we used this method to check if our custom form component correctly
renders its internal label:

//...

@Test

public void testCustomPanelContainsLabel(){

TemperatureDegreeField field = new TemperatureDegreeField("field", Model.of(0.00));

//Use standard JUnit class Assert

Assert.assertNull(field.get("mesuramentUnit"));

tester.startComponent(field);

Assert.assertNotNull(field.get("mesuramentUnit"));

}

//...

If test requires a page we can use startComponentInPage(Component) which automatically
generates a page for our component.

20.1.4 Testing the response

WicketTester allows us to access to the last response generated during testing with method
getLastResponse. The returned value is an instance of class MockHttpServletResponse that
provides helper methods to extract informations from mocked request.

Wicket free user guide 203

20 Test Driven Development with Wicket

In the test case from project CustomResourceMounting we extract the text contained in the last
response with method getDocument and we check if it is equal to the RSS feed used for the test:

//...

@Test

public void testMountedResourceResponse() throws IOException, FeedException{
tester.startResource(new RSSProducerResource());

String responseTxt = tester.getLastResponse().getDocument();

//write the RSS feed used in the test into a ByteArrayOutputStream

ByteArrayOutputStream outputStream = new ByteArrayOutputStream();

Writer writer = new OutputStreamWriter(outputStream);

SyndFeedOutput output = new SyndFeedOutput();

output.output(RSSProducerResource.getFeed(), writer);

//the response and the RSS must be equal

Assert.assertEquals(responseTxt, outputStream.toString());

}

//...

To simulate a request to the custom resource we used method startResource which can be used
also with resource references.

20.1.5 Testing URLs

WicketTester can be pointed to an arbitrary URL with method executeUrl(String url). This
can be useful to test mounted pages, resources or request mappers:

//...

//the resource was mapped at '/foo/bar'

tester.executeUrl("./foo/bar");

//...

20.1.6 Testing AJAX components

If our application uses AJAX to refresh components markup, we can test if AjaxRequestTarget
contains a given component with WicketTester's method assertComponentOnAjaxResponse:

//...

//test if AjaxRequestTarget contains a component (using its instance)

tester.assertComponentOnAjaxResponse(amountLabel);

//...

//test if AjaxRequestTarget contains a component (using its path)

tester.assertComponentOnAjaxResponse("pathToLabel:labelId");

It's also possible to use method isComponentOnAjaxResponse(Component cmp) to know if a
component has been added to AjaxRequestTarget:

//...

//test if AjaxRequestTarget does NOT contain amountLabel

assertFalse(tester.isComponentOnAjaxResponse(amountLabel));

//...

20.1.7 Testing AJAX events

Wicket free user guide 204

20 Test Driven Development with Wicket

Behavior AjaxEventBehavior and its subclasses can be tested simulating AJAX events with
WicketTester's method executeAjaxEvent(Component cmp, String event). Here is the
sample code from project TestAjaxEventsExample:

Home page code:

public class HomePage extends WebPage {

 public static String INIT_VALUE = "Initial value";

 public static String OTHER_VALUE = "Other value";

 public HomePage(final PageParameters parameters) {

super(parameters);

Label label;

add(label = new Label("label", INIT_VALUE));

label.add(new AjaxEventBehavior("click") {

@Override

protected void onEvent(AjaxRequestTarget target) {

//change label's data object

getComponent().setDefaultModelObject(OTHER_VALUE);

target.add(getComponent());

}

}).setOutputMarkupId(true);

//...

 }

}

Test method:

@Test
public void testAjaxBehavior(){

//start and render the test page

tester.startPage(HomePage.class);

//test if label has the initial expected value

tester.assertLabel("label", HomePage.INIT_VALUE);

//simulate an AJAX "click" event

tester.executeAjaxEvent("label", "click");

//test if label has changed as expected

tester.assertLabel("label", HomePage.OTHER_VALUE);

}

20.1.8 Testing AJAX behaviors

To test a generic AJAX behavior we can simulate a request to it using WicketTester's method
executeBehavior(AbstractAjaxBehavior behavior):

//...

AjaxFormComponentUpdatingBehavior ajaxBehavior = new AjaxFormComponentUpdatingBehavior

 ("change"){

@Override

protected void onUpdate(AjaxRequestTarget target) {

//...

}

};

component.add(ajaxBehavior);

Wicket free user guide 205

20 Test Driven Development with Wicket

//...

//execute AJAX behavior, i.e. onUpdate will be invoked

tester.executeBehavior(ajaxBehavior));

//...

20.1.9 Using a custom servlet context

In paragraph 13.9 we have seen how to configure our application to store resource files into a custom
folder placed inside webapp root folder (see project CustomFolder4MarkupExample).

In order to write testing code for applications that use this kind of customization, we must tell
WicketTester which folder to use as webapp root. This is necessary as under test environment we
don't have any web server, hence it's impossible for WicketTester to retrieve this parameter from
servlet context.

Webapp root folder can be passed to WicketTester's constructor as further parameter like we did in
the test case of project CustomFolder4MarkupExample:

public class TestHomePage{

 private WicketTester tester;

 @Before

 public void setUp(){

 //build the path to webapp root folder

 File curDirectory = new File(System.getProperty("user.dir"));

 File webContextDir = new File(curDirectory, "src/main/webapp");

 tester = new WicketTester(new WicketApplication(), webContextDir.getAbsolutePath());

 }

 //test methods...

}

20.2 Testing Wicket forms
Wicket provides utility class FormTester that is expressly designed to test Wicket forms. A new
FormTester is returned by WicketTester's method newFormTester(String, boolean) which
takes in input the page-relative path of the form we want to test and a boolean flag indicating if its form
components must be filled with a blank string:

//...

//create a new form tester without filling its form components with a blank string

FormTester formTester = tester.newFormTester("form", false);

//...

FormTester can simulate form submission with method submit which takes in input as optional
parameter the submitting component to use instead of the default one:

//...

//create a new form tester without filling its form components with a blank string

FormTester formTester = tester.newFormTester("form", false);

//submit form with default submitter

formTester.submit();

//...

//submit form using inner component 'button' as alternate button

Wicket free user guide 206

20 Test Driven Development with Wicket

formTester.submit("button");

If we want to submit a form with an external link component we can use method submitLink
(String path, boolean pageRelative) specifying the path to the link.

In the next paragraphs we will see how to use WicketTester and FormTester to interact with a
form and with its children components.

20.2.1 Setting form components input

The purpose of a HTML form is to collect user input. FormTester comes with the following set of
methods that simulate input insertion into form's fields:

• setValue(String path, String value): inserts the given textual value into the specified
component. It can be used with components TextField and TextArea. A version of this
method that accepts a component instance instead of its path is also available.

• setValue(String checkboxId, boolean value): sets the value of a given CheckBox
component.

• setFile(String formComponentId, File file, String contentType): sets a File object on a
FileUploadField component.

• select(String formComponentId, int index): selects an option among a list of possible options
owned by a component. It supports components that are subclasses of AbstractChoice
along with RadioGroup and CheckGroup.

• selectMultiple(String formComponentId, int[] indexes): selects all the options corresponding
to the given array of indexes. It can be used with multiple-choice components like CheckGroup
or ListMultipleChoice.

setValue is used inside method insertUsernamePassword to set the username and password
fields of the form used in project StatelessLoginForm:

protected void insertUsernamePassword(String username, String password) {

//start and render the test page

tester.startPage(HomePage.class);

FormTester formTester = tester.newFormTester("form");

//set credentials

formTester.setValue("username", username);

formTester.setValue("password", password);

//submit form

formTester.submit();

}

20.2.2 Testing feedback messages

To check if a page contains one or more expected feedback messages we can use the following
methods provided by WicketTester:

• assertFeedback(String path, String... messages): asserts that a given panel contains the
specified messages

• assertInfoMessages(String... expectedInfoMessages): asserts that the expected info
messages are rendered in the page.

• assertErrorMessages(String... expectedErrorMessages): asserts that the expected error
messages are rendered in the page.

assertInfoMessages and assertErrorMessages are used in the test case from project
StatelessLoginForm to check that form generates a feedback message in accordance with the login

Wicket free user guide 207

20 Test Driven Development with Wicket

result:

@Test

public void testMessageForSuccessfulLogin(){

inserUsernamePassword("user", "user");

tester.assertInfoMessages("Username and password are correct!");

}

@Test

public void testMessageForFailedLogin (){

inserUsernamePassword("wrongCredential", "wrongCredential");

tester.assertErrorMessages("Wrong username or password");

}

20.2.3 Testing models

Component model can be tested as well. With method assertModelValue we can test if a specific
component has the expected data object inside its model.

This method has been used in the test case of project ModelChainingExample to check if the form and
the drop-down menu share the same data object:

@Test

public void testFormSelectSameModelObject(){

PersonListDetails personListDetails = new PersonListDetails();

DropDownChoice dropDownChoice = (DropDownChoice) personListDetails.get("persons");

List choices = dropDownChoice.getChoices();

//select the second option of the drop-down menu

dropDownChoice.setModelObject(choices.get(1));

//start and render the test page

tester.startPage(personListDetails);

//assert that form has the same data object used by drop-down menu

tester.assertModelValue("form", dropDownChoice.getModelObject());

}

20.3 Testing markup with TagTester
If we need to test component markup at a more fine-grained level, we can use class TagTester from

package org.apache.wicket.util.tester.
This test class allows to check if the generated markup contains one or more tags having a given

attribute with a given value. TagTester can not be directly instantiated but it comes with three factory
methods that return one or more TagTester matching the searching criteria. In the following test case
(from project TagTesterExample) we retrieve the first tag of the home page (a tag) having
attribute class equal to myClass:

HomePage markup:

<html xmlns:wicket="http://wicket.apache.org">

<head>

<meta charset="utf-8" />

<title></title>

</head>

<body>

Wicket free user guide 208

20 Test Driven Development with Wicket

<div class="myClass"></div>

</body>

</html>

Test method:

@Test

public void homePageMarkupTest()

{

//start and render the test page

tester.startPage(HomePage.class);

//retrieve response's markup

String responseTxt = tester.getLastResponse().getDocument();

TagTester tagTester = TagTester.createTagByAttribute(responseTxt, "class", "myClass");

Assert.assertNotNull(tagTester);

Assert.assertEquals("span", tagTester.getName());

List<TagTester> tagTesterList = TagTester.createTagsByAttribute(responseTxt, "class",

 "myClass", false);

Assert.assertEquals(2, tagTesterList.size());

}

The name of the tag found by TagTester can be retrieved with its method getName. Method
createTagsByAttribute returns all the tags that have the given value on the given attribute. In the
code above we have used this method to test that our markup contains two tags having attribute class
equal to myClass.

20.4 Summary
With a component-oriented framework we can test our pages and components as we use to do with

any other Java entity. Wicket offers a complete support for writing testing code, offering built-in tools to
test nearly all the elements that build up our applications (pages, containers, links, behaviors, etc...).

The main entity discussed in this chapter has been class WicketTester which can be used to write
unit tests and acceptance tests for our application, but we have also seen how to test forms with
FormTester and how to inspect markup with TagTester.

In addition to learning how to use the utility classes provided by Wicket for testing, we have also
experienced the innovative approach of Wicket to web testing that allows to test components in isolation
without the need of running our tests with a web server and depending only on JUnit as testing
framework.

Wicket free user guide 209

20 Test Driven Development with Wicket

Wicket free user guide 210

 Appendix A: working with Maven

Appendix A: working with Maven

A.1 Switching Wicket to DEPLOYMENT mode
As pointed out in the note at page 9, Wicket can be started in two modes, DEVELOPMENT and

DEPLOYMENT. When we are in DEVELOPMENT mode Wicket warns us at application startup with the
following message:

**

*** WARNING: Wicket is running in DEVELOPMENT mode. ***

*** ^^^^^^^^^^^ ***

*** Do NOT deploy to your live server(s) without changing this. ***

*** See Application#getConfigurationType() for more information. ***

**

As we can read Wicket itself discourages us from using DEVELOPMENT mode into production
environment. The running mode of our application can be configured in three different ways. The first
one is adding a filter parameter inside deployment descriptor web.xml:

<filter>

<filter-name>wicket.MyApp</filter-name>

<filter-class>org.apache.wicket.protocol.http.WicketFilter</filter-class>

<init-param>

<param-name>applicationClassName</param-name>

<param-value>org.wicketTutorial.WicketApplication</param-value>

</init-param>

<init-param>

 <param-name>configuration</param-name>

 <param-value>deployment</param-value>

</init-param>

</filter>

The additional parameter is written in bold. The same parameter can be also expressed as context
parameter:

<context-param>

 <param-name>configuration</param-name>

 <param-value>deployment</param-value>

</context-param>

The third way to set the running mode is using system property wicket.configuration. This
parameter can be specified in the command line that starts up the server:

java -Dwicket.configuration=deployment ...

Remember that system properties overwrite other settings, so they are ideal to ensure that on

Wicket free user guide 211

 Appendix A: working with Maven

production machine the running mode will be always set to DEPLOYMENT.

A.2 Creating a Wicket project from scratch and importing it into our
favourite IDE.

 Note

In order to follow the instructions of this paragraph you must have Maven

installed on your system. The installation of Maven is out of the scope of this

guide but you can easily find an extensive documentation about it on Internet.

Another requirement is a good Internet connection (a flat ADSL is enough)

because Maven needs to connect to its central repository to download the

required dependencies.

A.2.1 From Maven to our IDE

Wicket project and its dependencies are managed using Maven67. This tool is very useful also when we
want to create a new project based on Wicket from scratch. With a couple of shell commands we can
generate a new project properly configured and ready to be imported into our favourite IDE.

The main step to create such a project is to run the command which generates project's structure and
its artifacts. If we are not familiar with Maven or we simply don't want to type this command by hand, we
can use the utility form on Wicket site at http://wicket.apache.org/start/quickstart.html:

Here we have to specify the root package of our project (GroupId), the project name (ArtifactId) and

67 http://maven.apache.org/

Wicket free user guide 212

Illustration 1: Wicket quickstart page

http://wicket.apache.org/start/quickstart.html
http://maven.apache.org/

 Appendix A: working with Maven

which version of Wicket we want to use (Version).
Once we have run the resulting command in the OS shell, we will have a new folder with the same

name of the project (i.e the ArtifactId). Inside this folder we can find a file called pom.xml. This is the
main file used by Maven to manage our project. For example, using “org.wicketTutorial” as GroupId and
“MyProject” as ArtifactId, we would obtain the following artifacts:

 .\MyProject

 | pom.xml

 |

 \---src

 +---main

 | +---java

 | | \---org

 | | \---wicketTutorial

 | | HomePage.html

 | | HomePage.java

 | | WicketApplication.java

 | |

 | +---resources

 | | log4j.properties

 | |

 | \---webapp

 | \---WEB-INF

 | web.xml

 |

 \---test

 \---java

 \---org

 \---wicketTutorial

 TestHomePage.java

Amongst other things, file pom.xml contains a section delimited by tag <dependencies> which declares
the dependencies of our project. By default the Maven archetype will add the following Wicket modules
as dependencies:

...

<dependencies>

<!-- WICKET DEPENDENCIES -->

<dependency>

<groupId>org.apache.wicket</groupId>

<artifactId>wicket-core</artifactId>

<version>${wicket.version}</version>

</dependency>

<dependency>

<groupId>org.apache.wicket</groupId>

<artifactId>wicket-ioc</artifactId>

<version>${wicket.version}</version>

</dependency>

<!-- OPTIONAL DEPENDENCY

<dependency>

<groupId>org.apache.wicket</groupId>

<artifactId>wicket-extensions</artifactId>

<version>${wicket.version}</version>

Wicket free user guide 213

 Appendix A: working with Maven

</dependency>

-->

...

</dependencies>

...

If we need to use more Wicket modules or additional libraries, we can add the appropriate XML
fragments68 here.

A.2.2 Importing a Maven project into our IDE

Maven projects can be easily imported into the most popular Java IDEs. However, the procedure
needed to do this differs from IDE to IDE. In this paragraph we can find the instructions to import Maven
projects into three of the most popular IDEs among Java developers : NetBeans, JetBrains IDEA and
Eclipse.

NetBeans
Starting from version 6.7, NetBeans includes Maven support, hence we can start it and directly open

the folder containing our project:

68 As described in Appendix B, the XML needed to include a dependency can be found at http://mvnrepository.com/

Wicket free user guide 214

file:///media/1BED-3063/WicketTutorial/%20http://mvnrepository.com/

 Appendix A: working with Maven

Wicket free user guide 215

 Appendix A: working with Maven

Wicket free user guide 216

 Appendix A: working with Maven

IDEA
IDEA comes with a Maven importing functionality that can be started under “File/New Project/Import

from external model/Maven”. Then, we just have to select the pom.xml file of our project:

Eclipse
If our IDE is Eclipse the import procedure is a little more complex. Before opening the new project we

must generate the Eclipse project artifacts running the following command from project root:

mvn eclipse:eclipse

 Now to import our project into Eclipse we must create a classpath variable called M2_REPO that must
point to your local Maven repository. This can be done selecting “Window/Preferences” and searching
for “Classpath Variables”. The folder containing our local Maven repository is usually under our user
folder and is called .m2 (for example under Unix system is /home/<myUserName>/.m2/repository):

Wicket free user guide 217

 Appendix A: working with Maven

Once we have created the classpath variable we can go to “File/Import.../Existing Project into
Workspace”, select the directory of the project and press “Finish”:

Once the project has been imported into Eclipse, we are free to use our favourite plug-ins to run it or
debug it (like for example run-jetty-run: http://code.google.com/p/run-jetty-run/).

 Note

Please note the option “Copy projects into workspace” in the previous illustration.
If we select it, the original project generated with Maven won't be affected by the
changes made inside Eclipse because we will work on a copy of it under the
current workspace.

Wicket free user guide 218

Illustration 2: Setting M2_REPO variable

Illustration 3: Importing existing project into Eclipse without coping the
original project into workspace (see the note below)

http://code.google.com/p/run-jetty-run/

 Appendix A: working with Maven

 Note

If we modify the pom.xml file (for example adding further dependencies) we must
regenerate project's artifacts and refresh the project (F5 key) to reflect changes
into Eclipse.

A.2.3 Speeding up development with plugins.

Now that we have our project loaded into our IDE we could start coding our components directly by
hand. However it would be a shame to not leverage the free and good Wicket plugins available for our
IDE. The following is a brief overview of the most widely used plugins for each of the three main IDEs
considered so far.

NetBeans
NetBeans offers Wicket support thought 'NetBeans Plugin for Wicket' hosted at

http://java.net/projects/nbwicketsupport/. This plugin is released under CDDL-1.0 license.
You can find a nice introduction guide to this plugin at http://netbeans.org/kb/docs/web/quickstart-

webapps-wicket.html.

IDEA
For JetBrain IDEA we can use WicketForge plugin, hosted at Google Code http://code.google.com/

p/wicketforge/. The plugin is released under ASF 2.0 license.

Eclipse
With Eclipse we can install one of the plugins that supports Wicket. As of the writing of this document,

the most popular is probably Qwickie, available in the Eclipse Marketplace and hosted on Google Code
at http://code.google.com/p/qwickie/.

QWickie is released under ASF 2.0 license.

Wicket free user guide 219

http://code.google.com/p/qwickie/
http://code.google.com/p/wicketforge/
http://code.google.com/p/wicketforge/
http://netbeans.org/kb/docs/web/quickstart-webapps-wicket.html
http://netbeans.org/kb/docs/web/quickstart-webapps-wicket.html
http://java.net/projects/nbwicketsupport/

 Appendix A: working with Maven

Wicket free user guide 220

 Appendix B: project WicketStuff

Appendix B: project WicketStuff

B.1 What is project WicketStuff?
 WicketStuff is an umbrella project that gathers different Wicket-related projects developed and

maintained by the community. The project is hosted on GitHub at https://github.com/wicketstuff/core.
Every module is structured as a parent Maven project containing the actual project that implements the
new functionality and an example project that illustrates how to use it in our code. The resulting directory
structure of each module is the following:

\<module name>-parent
 |
 +---<module name>
 \---<module name>-examples

So far we have introduced only modules Kryo Serializer and JavaEE Inject, but WicketStuff comes with
many other modules that can be used in our applications69. Some of them come in handy to improve the
user experience of our pages with complex components or integrating some popular web services (like
Google Maps70) and JavaScript libraries (like TinyMCE71).

This appendix provides a quick overview of what WicketStuff offers to enhance the usability and the
visually-appealing of our pages.

 Note

Every WicketStuff module can be downloaded as JAR archive at
http://mvnrepository.com. This site provides also the XML fragment needed to
include it as a dependency into our pom.xml file72.

B.2 Module tinymce
Module tinymce offers integration with the namesake JavaScript library that turns our “humble” text-

areas into a full-featured HTML WYSIWYG editor:

69 The full list of the available modules can be found at https://github.com/wicketstuff/core/wiki
70 http://maps.google.com/
71 http://www.tinymce.com/
72 In addition to Maven also Ivy, Grape, Gradle ,Buildr and SBT are supported

Wicket free user guide 221

http://mvnrepository.com/
http://www.tinymce.com/
http://maps.google.com/
https://github.com/wicketstuff/core/wiki
https://github.com/wicketstuff/core

 Appendix B: project WicketStuff

To “tinyfy” a textarea component we must use behavior TinyMceBehavior:

TextArea textArea = new TextArea("textArea", new Model(""));

textArea.add(new TinyMceBehavior());

By default TinyMceBehavior adds only a basic set of functionalities to our textarea:

To add more functionalities we must use class TinyMCESettings to register additional TinyMCE
plugins and to customize the toolbars buttons. The following code is an excerpt from example page
FullFeaturedTinyMCEPage:

TinyMCESettings settings = new TinyMCESettings(TinyMCESettings.Theme.advanced);

//...

// first toolbar

//...

settings.add(Button.newdocument, TinyMCESettings.Toolbar.first,

 TinyMCESettings.Position.before);

settings.add(Button.separator, TinyMCESettings.Toolbar.first,

 TinyMCESettings.Position.before);

settings.add(Button.fontselect, TinyMCESettings.Toolbar.first,

 TinyMCESettings.Position.after);

//...

// other settings

settings.setToolbarAlign(TinyMCESettings.Align.left);

settings.setToolbarLocation(TinyMCESettings.Location.top);

settings.setStatusbarLocation(TinyMCESettings.Location.bottom);

settings.setResizing(true);

//...

TextArea textArea = new TextArea("ta", new Model(TEXT));

textArea.add(new TinyMceBehavior(settings));

For more configuration examples see pages inside package wicket.contrib.examples.tinymce
in the example project of the module.

B.3 Module wicketstuff-gmap3
Module wicketstuff-gmap3 integrates Google Maps73 service with Wicket providing component
org.wicketstuff.gmap.GMap. If we want to embed Google Maps into one of our pages we just
need to add component GMap inside the page. The following snippet is taken from example page
SimplePage:

73 http://maps.google.com/

Wicket free user guide 222

http://maps.google.com/

 Appendix B: project WicketStuff

Markup code:

...

<body>

 <div wicket:id="map">Map</div>

</body>

...

Java code:

public class SimplePage extends WicketExamplePage

{

 public SimplePage()

 {

 GMap map = new GMap("map");

 map.setStreetViewControlEnabled(false);

 map.setScaleControlEnabled(true);

 map.setScrollWheelZoomEnabled(true);

 map.setCenter(new GLatLng(52.47649, 13.228573));

 add(map);

 }

}

The component defines a number of setters to customize its behavior and appearance. More info can
be found on wiki page https://github.com/wicketstuff/core/wiki/Gmap3.

B.4 Module wicketstuff-googlecharts
To integrate the Google Chart74 tool into our pages we can use module wicketstuff-googlecharts. To

display a chart we must combine the following entities: component Chart, interface IChartData and
class ChartProvider, all inside package org.wicketstuff.googlecharts. The following snippet
is taken from example page Home:

Markup code:

...

 <h2>Hello World</h2>

...

Java code:

IChartData data = new AbstractChartData(){

 public double[][] getData(){

 return new double[][] { { 34, 22 } };

 }

};

ChartProvider provider = new ChartProvider(new Dimension(250, 100), ChartType.PIE_3D,

 data);

provider.setPieLabels(new String[] { "Hello", "World" });

add(new Chart("helloWorld", provider));

Displayed chart:

74 https://developers.google.com/chart/

Wicket free user guide 223

https://developers.google.com/chart/
https://github.com/wicketstuff/core/wiki/Gmap3

 Appendix B: project WicketStuff

As we can see in the snippet above, component Chart must be used with tag while the input
data returned by IChartData must be a two-dimensional array of double values.

B.5 Module wicketstuff-inmethod-grid
Module wicketstuff-inmethod-grid implements a sophisticated grid-component with class com.
inmethod.grid.datagrid.DataGrid.

Just like pageable repeaters (seen in paragraph 11.4) DataGrid provides data pagination and uses
interface IDataProvider as data source. In addition the component is completely ajaxified:

DataGrid supports also editable cells and row selection:

The following snippet illustrate how to use DataGrid and is taken from wiki page
https://github.com/wicketstuff/core/wiki/InMethodGrid:

Markup code:

...

Wicket free user guide 224

https://github.com/wicketstuff/core/wiki/InMethodGrid

 Appendix B: project WicketStuff

 <div wicket:id="grid">Grid</div>

...

Java code:

final List<Person> personList = //load a list of Persons

final ListDataProvider listDataProvider = new ListDataProvider(personList);

//define grid's columns

List<IGridColumn> cols = (List) Arrays.asList(

 new PropertyColumn(new Model("First Name"), "firstName"),

 new PropertyColumn(new Model("Last Name"), "lastName"));

DataGrid grid = new DefaultDataGrid("grid", new DataProviderAdapter(listDataProvider),

 cols);

add(grid);

In the code above we have used convenience class DefaultDataGrid that is a subclass of
DataGrid and it already comes with a navigation toolbar.

The example pages are under package com.inmethod.grid.examples.pages in the example
project which is hosted at http://www.wicket-library.com/inmethod-grid/data-grid/simple.

Wicket free user guide 225

http://www.wicket-library.com/inmethod-grid/data-grid/simple

 Appendix B: project WicketStuff

Wicket free user guide 226

 Alphabetical Index

Alphabetical Index

A
AbstractAjaxTimerBehavior..167
AbstractCheckBoxModel..164
AbstractResource...130
AbstractResource ..134
AbstractRoleAuthorizationStrategyWicket..................186
AbstractTree...160
AbstractValidator..87
Acceptance test..193
Access-denied page...188
AJAX...155
AJAX behaviors..165
AJAX call listener..169

global listeners..173
AjaxButton..156
AjaxCheckBox..157
AjaxEditableChoiceLabel..157
AjaxEditableLabel...157
AjaxEditableMultiLineLabel..157
AjaxEventBehavior...166
AjaxFallbackButton...157
AjaxFallbackLink...157
AjaxFormComponentUpdatingBehavior.....................167
AjaxFormSubmitBehavior...167
AjaxLink..155, 156
AjaxRequestAttributes..168
AjaxRequestTarget...155, 196
AjaxSubmitLink...156
AnnotationsRoleAuthorizationStrategy.......................188
Application..46, 148
ApplicationSettings...152
Attribute wicket:id...11
AttributeModifier...26
AuthenticatedWebApplication.....................180, 181, 189
AuthenticatedWebSession...180
Authentication...180

authentication example...181
onConfigure..37

AutoCompleteTextField..158
Autolink ..

bookmarkable pages...56
package resources..132

B
Behavior...26, 38
Behaviors..145
Bookmarkable pages..54
BookmarkablePageLink..56
Border...32
Broadcast...148
Built-in validators..84
Bundles lookup algorithm...122

order of traversed bundles....................................125
Button...93

C
Callback URLs..146
CaptchaImageResource...130
CheckBox...102, 162
CheckBoxMultipleChoice..104
CheckboxMultipleChoiceSelector...............................105
CheckBoxSelector..105
CheckedFolder...162
ChoiceRenderer...75, 77
ClassPathResourceFinder..137
Component...7, 65, 145, 148

and Model...65
ComponentNotFoundException...................................12
CompoundAuthorizationStrategy................................185
CompoundPropertyModel.......................................68, 73
continueToOriginalDestination...................................181
ConverterLocator..90
CryptoMapper...63

D
Data grid...213
DataView..113

populateItem...113
DateTextField...141
DefaultItemReuseStrategy...113
DefaultMapperContext..62
DefaultMutableTreeNode...161
Deprecated tree components.....................................161
DropDownChoice...74

E
Event-based component communication...................148
ExternalLink..58

F
FileUploadField...96
Flash messages...88
Folder...162
Form...70

feedback messages..82
multipart content...96
processing...82
validation...82

FormComponent...70
FormComponentPanel...98
FormTester...198

select...199
selectMultiple..199
setFile...199
setValue..199
submit...198
submitLink...199

Wicket free user guide 227

 Alphabetical Index

G
Generating HTML markup from code.........................152
getDefaultModelObject...72
getMarkupId..27
getPage..36
getParent..36
Google Chart..212
Google Maps..211
Guice..176
GuiceApplication...179
GWT...5

H
Header contribution..133
HeaderItem...133
Hibernate..1
HTTPS..190
HttpSession..50
HttpsMapper...190

I
IAjaxCallListener...168
IAjaxIndicatorAware..168
IApplicationSettings..44
IAuthorizationStrategy..184
IAutoCompleteRenderer...158
IChainingModel...75
IChoiceRender..75
IComponentAwareHeaderContributor........................171
IComponentInheritedModel..68
IConverter...89
IConverterLocator...90
IDataProvider..113
IDetachable..78
IEvent...149
IEventSink..148
IEventSource..148
IFormSubmitter...70, 92
IFormSubmittingComponent...92
IHeaderContributor...133, 145
IHeaderResponse...133
IInitializer..150
IItemReuseStrategy..113
IJavaScriptLibrarySettings..143
Image..131
IMapperContext..61
IMarkupResourceStreamProvider..............................152
IModel...65
Indexed parameters..55
IndicatingAjaxButton...168
IndicatingAjaxFallbackLink...168
IndicatingAjaxLink...168
Initializer...150
Internationalization and Models..................................126
invalidate..52
invalidateNow...52
IPackageResourceGuard...191
IPageable...113
IRequestCycleListener...48
IRequestCycleProvider...46
IRequestHandler...47

handler resolving algorithm.....................................47
IRequestListener..146
IRequestMapper...47
IResource...130

Attributes...130
IResourceFinder...137
IResourceSettings......................................125, 137, 138

getResourceFinders..138
getStringResourceLoaders...................................125

IResourceStreamLocator..137
IRoleCheckingStrategy...188
ISecuritySettings...189
isEnabled..26
ISerializer..42
ISessionListener...49
isPageStateless..40
isTemporary..51
IStringResourceLoader...125
isVisible..26
Item...112
ITreeProvider..161
IUnauthorizedComponentInstantiationListener..........189
IValidator..82

J
JavaBeans..67
JavaEE Inject..210
JavaEE Inject ...176
JavaEEComponentInjector...176
JavaSerializer...42
JBoss Seam...176
JMX..150

Using JMX to control Wicket apps........................150
JQuery integration..140
JQueryDateField...141
JQueryUI integration...140
JSF...5
JTree..161
JUnit...5, 193

K
Kryo project..42
Kryo serializer...42, 210

L
Label...8, 11, 65
Link...12, 54

onClick..12
ListDataProvider...113
ListItem...111
ListView..111

populateItem...111
setReuseItems..112

LoadableDetachableModel...78
Locale...117
Localization in Wicket...117

M

Wicket free user guide 228

 Alphabetical Index

Markup file..11
MarkupContainer..11, 18
Maven...8, 193, 204

importing projects into Eclipse..............................207
importing projects into IDEA.................................206
importing projects into NetBeans..........................206

Metadata...52
MetaDataKey..52
MetaDataRoleAuthorizationStrategy..........................186
MockHttpServletResponse...195
ModalWindow...158

PageCreator..159
WindowClosedCallback..160

Model..65
model chaining..75
model detaching..78
model inheritance..68
using more than one model....................................80

Model (class)..66
MountedMapper...60
mountPage...60
MultiFileUploadField...97
MVC pattern...4

N
Named parameters...54
NestedTree...161

O
onBeforeRender...36
onInitialize...36
onModelChanged...65
onSubmit..70
OpenEJB..176

P
PackageMapper...61
PackageResourceReference......................................131
Page mounting...

optional placeholders..61
placeholders..60

Page serialization...40, 42
Page versioning..40

disabling versioning..42
PageParameters...44, 54
PageReference...42
PagingNavigator...114
Palette..107
Panel..18
PasswordTextField...72
Path..137
PatternDateConvert..143
POJO..67
PropertyModel..68
PropertyResolver..68

Q
Query string parameters...54

R
Redirecting user to an intermediate page...................183
RefreshingView..112

populateItem...112
Repeaters...110
RepeatingView...110
Request..46
RequestCycle...46, 148

hook methods...48
listeners...48
request processing..47
using a custom request cycle..................................46

RequestListenerInterface...146
RequireHttps...190
Resource management..

custom resources..134
mounting resources..135
package resources..130
resource dependencies...134
resource references..130
static vs dynamic resources..................................130

ResourceBundle...117
ResourceReference..130
ResourceResponse..135

WriteCallback..135
ResourceStreamLocator...137
Response...46
RestartResponseAtInterceptPageException..............183
restartResponseAtSignInPage...................................181
ReuseIfModelsEqualStrategy.....................................113
RoleAuthorizationStrategy..190
Roles..185

S
SecurePackageResourceGuard.................................191
Serializable...66
Session...49, 148

accessing to http session object.............................50
discarding session data..52
session listener...49

setDefaultModelObject...72
setEnabled..26
setMarkupId..27
setOutputMarkupId...27
setOutputMarkupPlaceholderTag...............................165
setRenderBodyOnly...30
setResponsePage..13, 48
setVersioned...42
setVisible..22, 26
SharedResourceReference..136
SimplePageAuthorizationStrategy..............................185
SortableDataProvider...113
Spring...1, 176, 177
SpringComponentInjector...177
Stateful pages...40
Stateless pages..40, 44, 55
StatelessLink..59
Struts..1
SubmitLink..93, 94
Swing..7
Swing/AWT...7
Switching Wicket to DEPLOYMENT mode.................203

Wicket free user guide 229

 Alphabetical Index

T
TagTester...200
Test Driven Development...193
Testing with Wicket...

setting form component input................................199
testing AJAX behaviors...197
testing AJAX components.....................................196
testing AJAX events..196
testing component status......................................195
testing components in isolation.............................195
testing feedback messages..................................199
testing links ..194
testing models...200
testing web response..195
testing Wicket forms..198

TextField...72
TinyMCE...210
Tree repeaters..160
TreeModelProvider...161

U
Unit test..193
Updating hidden components via AJAX.....................165
urlFor and mapUrlFor...48
UrlPathPagParametersEncoder...................................62

V
Vaadin..5

W
WebApplication and testing..

WebApplication...194
WebApplicationPath...137, 138
WebMarkupContainer...27, 28
WebPage..7, 11
WebSession...49
Wicket forms...70
Wicket Links...12

Wicket modules..7
Wicket plugins..208

for Eclipse...208
for IDEA..208
for NetBeans...208
Qwickie...208
WicketForge..208

Wicket tags...
<wicket:body/>..32
<wicket:border>..32
<wicket:child>...23
<wicket:enclosure>...31
<wicket:extend>..23
<wicket:fragment>...28
<wicket:head>...29
<wicket:id>..6
<wicket:link>...56, 132
<wicket:message>..121
<wicket:panel>..19
<wicket:remove>...30

WicketRuntimeException..12
WicketServlet..11
WicketStuff...42, 176, 210
WicketTester...193

assertComponentOnAjaxResponse......................196
assertEnabled...195
assertErrorMessages..199
assertFeedback..199
assertInfoMessages..199
assertLabel...194
assertModelValue...200
assertRenderedPage..194
assertRequired..195
assertVisible..195
clickLink..194
executeAjaxEvent...197
executeUrl...196
getLastRenderedPage..194
getLastResponse..195
isComponentOnAjaxResponse.............................196
newFormTester...198
startComponent..195
startComponentInPage...195
startPage...194
startResource..196

Wicket free user guide 230

	Table of Contents
	Preface
	How to use the example code
	Graphic conventions
	1 Why should I learn Wicket?
	1.1 We all like spaghetti :-) ...
	1.2 Component oriented frameworks: an overview
	1.3 Benefits of component oriented frameworks for web development
	1.4 Wicket vs the other component oriented frameworks

	2 Wicket says “Hello world!”
	2.1 Wicket distribution and modules
	2.2 Configuration of Wicket applications
	2.2.1 Wicket application structure.
	2.2.2 The application class

	2.3 The HomePage class
	2.4 Wicket Links
	2.5 Summary

	3 Wicket as page layout manager
	3.1 Header, footer, left menu, content, etc...
	3.2 Here comes the inheritance!
	3.2.1 Markup inheritance
	3.2.2 Panel class

	3.3 Divide et impera!
	3.3.1 Panels and layout areas
	3.3.2 Template page
	3.3.3 Final example

	3.4 Markup inheritance with <wicket:extend> tag
	3.4.1 Our example revisited

	3.5 Summary

	4 Keeping control over HTML
	4.1 Hiding or disabling a component
	4.2 Modifing tag attributes
	4.3 Generating tag attribute 'id'
	4.4 Creating panels “on the fly” with WebMarkupContainer
	4.5 Working with markup fragments
	4.6 Adding header contents to the final page
	4.7 Using stub markup in our pages/panels
	4.8 How to render component body only
	4.9 Hiding decorating elements with tag <wicket:enclosure>
	4.10 Surrounding existing markup with Border
	4.11 Summary

	5 Components lifecycle
	5.1 Lifecycle stages of a component
	5.2 Hook methods for component lifecycle
	5.3 Initialization stage
	5.4 Rendering stage
	5.4.1 Method onBeforeRender
	5.4.2 Method onConfigure
	5.4.3 Method onComponentTag
	5.4.4 Methods onComponentTagBody

	5.5 Removing stage
	5.6 Summary

	6 Page versioning and caching
	6.1 Stateful pages VS stateless
	6.2 Stateful pages
	6.2.1 Using a specific page version with PageReference
	6.2.2 Turning off page versioning
	6.2.3 Pluggable serialization
	6.2.4 Page caching
	6.2.5 Page expiration

	6.3 Stateless pages
	6.4 Summary

	7 Under the hood of request processing
	7.1 Class Application and request processing
	7.2 Classes Request and Response
	7.3 The “director” of request processing: RequestCycle
	7.3.1 RequestCycle and request processing
	7.3.2 Generating url with methods urlFor and mapUrlFor
	7.3.3 Method setResponsePage
	7.3.4 RequestCycle's hook methods and listeners

	7.4 Class Session
	7.4.1 Session and listeners
	7.4.2 Handling session attributes
	7.4.3 Accessing to http session
	7.4.4 Temporary and permanent sessions
	7.4.5 Discarding session data

	7.5 Storing arbitrary objects with metadata
	7.6 Summary

	8 Wicket Links and URL generation
	8.1 PageParameters
	8.1.1 PageParameters and bookmarkable pages
	8.1.2 Indexed parameters

	8.2 Bookmarkable links
	8.3 Automatically creating bookmarkable links with tag <wicket:link>
	8.4 External links
	8.5 Stateless links
	8.6 Generating structured and clear URLs
	8.6.1 Mounting a single page
	8.6.2 Using parameter placeholders with mounted pages
	8.6.3 Mounting a package
	8.6.4 Providing custom mapper context to request mappers
	8.6.5 Controlling how page parameters are encoded with IPageParametersEncoder
	8.6.6 Encrypting page URLs

	8.7 Summary

	9 Wicket models and forms
	9.1 What is a model?
	9.2 Models and JavaBeans
	9.2.1 PropertyModel
	9.2.2 CompoundPropertyModel and model inheritance

	9.3 Wicket forms
	9.3.1 Form and models
	9.3.2 Login form

	9.4 Component DropDownChoice
	9.5 Model chaining
	9.6 Detachable models.
	9.7 Using more than one model in a component
	9.8 Use models!
	9.9 Summary

	10 Wicket forms in detail
	10.1 Default form processing
	10.2 Form validation and feedback messages
	10.2.1 Feedback messages and localization
	10.2.2 Displaing feedback messages and filtering them
	10.2.3 Built-in validators
	10.2.4 Overriding standard feedback messages with custom bundles
	10.2.5 Creating custom validators
	10.2.6 Using flash messages

	10.3 Input value conversion
	10.3.1 Creating custom application-scoped converters

	10.4 Submit form with an IFormSubmittingComponent
	10.4.1 Components Button and SubmitLink
	10.4.2 Disabling default form processing

	10.5 Nested forms
	10.6 Multi-line text input
	10.7 File upload
	10.7.1 Upload multiple files

	10.8 Creating complex form components with FormComponentPanel
	10.9 Stateless form
	10.10 Working with radio buttons and checkboxes
	10.10.1 Working with grouped checkboxes
	10.10.2 How to implement a “Select all” checkbox
	10.10.3 Working with grouped radio buttons

	10.11 Selecting multiple values with ListMultipleChoices and Palette
	10.11.1 Component Palette

	10.12 Summary

	11 Displaying multiple items with repeaters
	11.1 Component RepeatingView
	11.2 Component ListView
	11.2.1 ListView and Form

	11.3 Component RefreshingView
	11.3.1 Item reuse strategy

	11.4 Pageable repeaters
	11.4.1 Component DataView
	11.4.2 Data paging

	11.5 Summary

	12 Internationalization with Wicket
	12.1 Localization
	12.2 Class Locale and ResourceBundle
	12.3 Localization in Wicket
	12.3.1 Style and variation parameters for bundles
	12.3.2 Using XML files as resource bundles
	12.3.3 Reading bundles from code
	12.3.4 Localization of bundles in Wicket.
	12.3.5 Localization of markup files
	12.3.6 Reading bundles with tag <wicket:message>

	12.4 Bundles lookup algorithm
	12.4.1 Localizing pages and panels
	12.4.2 Component-specific resources
	12.4.3 Package bundles
	12.4.4 Bundles for feedback messages
	12.4.5 Extending the default lookup algorithm

	12.5 Localization of component's choices
	12.6 Internationalization and Models
	12.6.1 ResourceModel
	12.6.2 StringResourceModel

	12.7 Summary

	13 Resource management with Wicket
	13.1 Static vs dynamic resources
	13.2 Resource references
	13.3 Package resources
	13.3.1 Using package resources with tag <wicket:link>

	13.4 Adding resources to page header section
	13.5 Resource dependencies
	13.6 Custom resources
	13.7 Mounting resources
	13.8 Shared resources
	13.9 Customizing resource loading.
	13.10 Summary

	14 An example of integration with JavaScript
	14.1 What we want to do...
	14.1.1 What features we want to implement.

	14.2 ...and how we will do it.
	14.2.1 Component package resources
	14.2.2 Initialization code
	14.2.3 Header contributor code

	14.3 Summary

	15 Wicket advanced topics
	15.1 Enriching components with behaviors
	15.2 Generating callback URLs with IRequestListener
	15.3 Wicket events infrastructure
	15.4 Initializers
	15.5 Using JMX with Wicket
	15.6 Generating HTML markup from code.
	15.6.1 Avoiding markup caching

	15.7 Summary

	16 Working with AJAX
	16.1 How to use AJAX components and behaviors.
	16.2 Built-in AJAX components
	16.2.1 Links and buttons
	16.2.2 Fallback components
	16.2.3 AJAX Checkbox
	16.2.4 AJAX editable labels
	16.2.5 Autocomplete text field
	16.2.6 Modal window
	16.2.7 Tree repeaters
	16.2.8 Working with hidden components

	16.3 Built-in AJAX behaviors
	16.3.1 AjaxEventBehavior
	16.3.2 AjaxFormSubmitBehavior
	16.3.3 AjaxFormComponentUpdatingBehavior
	16.3.4 AbstractAjaxTimerBehavior

	16.4 Using an activity indicator
	16.5 Ajax request attributes and call listeners
	16.6 Creating custom AJAX call listener
	16.6.1 What we want for our listener
	16.6.2 How to implement the listener
	16.6.3 JavaScript code
	16.6.4 Class code
	16.6.5 Global listeners

	16.7 Summary

	17 Working with WebSocket
	17.1 Native WebSocket support
	17.2 Using WebSocket with Atmosphere
	17.3 An outlook to JSR 356

	18 Integration with enterprise containers
	18.1 Integrating Wicket with EJB
	18.2 Integrating Wicket with Spring
	18.3 JSR-33064 annotations
	18.4 Summary

	19 Security with Wicket
	19.1 Authentication
	19.1.1 AuthenticatedWebSession
	19.1.2 AuthenticatedWebApplication
	19.1.3 A basic example of authentication.
	19.1.4 Redirecting user to an intermediate page

	19.2 Authorizations
	19.2.1 SimplePageAuthorizationStrategy
	19.2.2 Role-based strategies
	19.2.2.1 Using roles with metadata
	19.2.2.2 Using roles with annotations

	19.2.3 Catching an unauthorized component instantiation
	19.2.4 Strategy RoleAuthorizationStrategy

	19.3 Using HTTPS protocol
	19.4 Package Resource Guard
	19.5 Summary

	20 Test Driven Development with Wicket
	20.1 Utility class WicketTester
	20.1.1 Testing links
	20.1.2 Testing component status
	20.1.3 Testing components in isolation
	20.1.4 Testing the response
	20.1.5 Testing URLs
	20.1.6 Testing AJAX components
	20.1.7 Testing AJAX events
	20.1.8 Testing AJAX behaviors
	20.1.9 Using a custom servlet context

	20.2 Testing Wicket forms
	20.2.1 Setting form components input
	20.2.2 Testing feedback messages
	20.2.3 Testing models

	20.3 Testing markup with TagTester
	20.4 Summary

	Appendix A: working with Maven
	A.1 Switching Wicket to DEPLOYMENT mode
	A.2 Creating a Wicket project from scratch and importing it into our favourite IDE.
	A.2.1 From Maven to our IDE
	A.2.2 Importing a Maven project into our IDE
	A.2.3 Speeding up development with plugins.

	Appendix B: project WicketStuff
	B.1 What is project WicketStuff?
	B.2 Module tinymce
	B.3 Module wicketstuff-gmap3
	B.4 Module wicketstuff-googlecharts
	B.5 Module wicketstuff-inmethod-grid

	Alphabetical Index

